shuramuji
?>

Докажите тождества (ctg^2альфа-tg^2альфа)×1/ctg^2альфа-1=1/cos^2альфа ) )

Алгебра

Ответы

ivshzam
\dfrac{ctg^2a-tg^2a}{ctg^2a-1}= \\ = \dfrac{ \dfrac{1}{tg^2a}-tg^2a }{ \dfrac{1}{tg^2a} -1}= \\ = \dfrac{ \dfrac{1-tg^4a}{tg^2a} }{ \dfrac{1-tg^2a}{tg^2a} }= \\ = \dfrac{(1-tg^2a)(1+tg^2a)}{1-tg^2a}= \\ =1+tg^2a= \\ = \dfrac{1}{cos^2a}
gav973

В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про бросание игральных костей и задачи о подбрасывании монет.

Перейдем еще к одному типу задач: про стрелков, которые делают выстрелы по целям (или мишеням), причем вероятности попаданий для каждого стрелка обычно заданы, а нужно найти вероятность ровно одного попадания, или не более двух попаданий, или всех трех и так далее, в зависимости от конкретной задачи.

Основной метод решения подобных задач - использование теорем о сложении и умножении вероятностей, который мы и разберем на примерах ниже. А перед примерами вы найдете онлайн калькулятор, который решить подобные задачи буквально в один клик! Удобно решать самому? Посмотрите видеоурок и скачайте бесплатный шаблон Excel для решения задач о выстрелах

Объяснение:

dimaproh

Во слишком много - ответы тоже краткие.

Объяснение:

1,1  f(-6) = 1/3*36 +12 = 24 - ответ.

1.2 f(2) = 1/3*4 - 2*2 = - 2 2/3 - ответ

2. Не допускается деление на 0.

Дано: y =x²-1*x-6 - квадратное уравнение.

Вычисляем дискриминант - D.

D = b² - 4*a*c = (-1)² - 4*(1)*(-6) = 25 - дискриминант. √D = 5.

Вычисляем корни уравнения.

x₁ = (-b+√D)/(2*a) = (1+5)/(2*1) = 6/2 = 3 - первый корень

x₂ = (-b-√D)/(2*a) = (1-5)/(2*1) = -4/2 = -2 - второй корень

3 и -2 - корни уравнения - исключить из ООФ.

D(f) = R\{-2;3} = (-∞;-2)∪(-2;3)∪(3;+∞) - ответ

3,1

Дано: y = x²-4*x+3 - квадратное уравнение.

D = b² - 4*a*c = (-4)² - 4*(1)*(3) = 4 - дискриминант. √D = 2.

Вычисляем корни уравнения.

x₁ = (-b+√D)/(2*a) = (4+2)/(2*1) = 6/2 = 3 - первый корень

x₂ = (-b-√D)/(2*a) = (4-2)/(2*1) = 2/2 = 1 - второй корень

3 и 1 - нули функции.

Минимум посередине между нулями = (1+3)/2 = 2 = x.

Fmin(2) = -1

Вершина параболы в точке А(2;-1), ветви вверх.

1) E(f) = [-1;+∞) - область значений.

2) Убывает: х = (-∞;2)

3) Положительна при Х=(-∞;1)∪(3;+∞) - ответ

4) Графики на рисунке в приложении.

5) Разрывы при делении на 0 в знаменателе.

х² ≠ 16 и х ≠ ± 4.

D(f) = R\{-4;4} = (-∞;-4)∪(-4;4)∪(4;+∞) - ответ.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Докажите тождества (ctg^2альфа-tg^2альфа)×1/ctg^2альфа-1=1/cos^2альфа ) )
Ваше имя (никнейм)*
Email*
Комментарий*