2) Функция задана параметрически { x = ln t { y = 1/2*(t+1/t) Берем производные по параметру t: { x' = 1/t { y' = 1/2*(1 - 1/t^2) = (t^2 - 1)/(2t^2) Первая производная: Берем вторые производные по параметру t: { { Вторая производная:
denbelousov963
05.04.2021
Ну тут все просто) Так как это не система, мы можешь подобрать любые числа, подчиняющиеся данным условиям) а) x=3, y=1 Проверка: 3-1=2 и 3+1=не равняется 8, не является решением второго, но является решением первого уравнения б) x=6, y=2 Проверка: 6-2=не равняется двум и 6+2=8, не является решением первого, но является решением второго в) x=5, y=3 Проверка: 5-3=2 и 5+3=8, являются решением и первого, и второго уравнения г) x=8, y=2 Проверка: 8-2=не равняется двум и 8+2=не равняется 8, значит не является решением ни первого уравнения ни второго
ВостриковаСтародубцева1980
05.04.2021
А) 3х -2у =8 ⇒ 2у = 3х -8 ⇒ у = 1,5 х -4 В этом уравнении угловой коэффициент к = 1,5. Любое уравнение , в котором к≠ 1,5 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) б) -5х +4у =3 ⇒ 4у = 3х -8 ⇒ у = 5 х +3 В этом уравнении угловой коэффициент к = 5. Любое уравнение , в котором к≠ 5 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) в) -3х -7 у =2 ⇒ 7у = -3х - 2 ⇒ у = -3/7 х - 2/7 В этом уравнении угловой коэффициент к = -3/7 Любое уравнение , в котором к≠ -3/7 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.) г)5х + 6у = 9 ⇒ 6у = -5х - 9 ⇒ у = -5/6 х - 9/6 В этом уравнении угловой коэффициент к =-5/6. Любое уравнение , в котором к≠ -5/6 будет иметь единственное решение с данным (у = 2х +8; у = -2х +6 и т.д.)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти dy/dx и d^2y/dx^2 для заданных функций: а) y=xe^-x^2; б)x=lnt; в) y=1/2(t+1/t)
2) Функция задана параметрически
{ x = ln t
{ y = 1/2*(t+1/t)
Берем производные по параметру t:
{ x' = 1/t
{ y' = 1/2*(1 - 1/t^2) = (t^2 - 1)/(2t^2)
Первая производная:
Берем вторые производные по параметру t:
{
{
Вторая производная: