1)Решение системы уравнений (-1; 10);
2)Решение системы уравнений (4; -1)
Объяснение:
Решите систему уравнений методом сложения:
1)y-6x=16
4y+6x=34
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при х одного значения и с противоположными знаками:
Складываем уравнения:
у+4у-6х+6х=16+34
5у=50
у=10
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
y-6x=16
-6х=16-у
-6х=16-10
-6х=6
х=6/-6
х= -1
Решение системы уравнений (-1; 10)
2)3x-4y=16
5x+6y=14
В данной системе, чтобы применить метод сложения, нужно первое уравнение умножить на 3, второе на 2:
9х-12у=48
10х+12у=28
Складываем уравнения:
9х+10х-12у+12у=48+28
19х=76
х=76/19
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
3x-4y=16
-4у=16-3*4
-4у=16-12
-4у=4
у=4/-4
у= -1
Решение системы уравнений (4; -1)
Так как наше число должно быть нечетным, оканчиваться оно должно на 1, 3 или 5. Пусть оно оканчивается на 1. Пусть четвертую позицию займет цифра 2, тогда третью позицию займет любое из оставшихся чисел с двумя вариантами перестановок на первой и второй позициях числа. Тогда всего чисел, оканчивающихся на 21 будет 6 штук. Но на месте двойки могут стоять 3, 4 или 5. Значит, чисел, оканчивающихся на 1 будет 6 * 4 = 24 штуки. А всего нечетных чисел (оканчивающихся на 1, 3 или 5): 24 * 3 = 72 (штуки).
ответ: 72
Поделитесь своими знаниями, ответьте на вопрос:
Решите за 9 класс сросно! а)2sin^2x- под корнем 2sinx=0, b)9cos^2x=7cosx , где стоит (^) такой знак это в квадрате
sin x принимаем за t
2t^2-2t-1=0
t1=1+sqrt(3), sqrt- корень
t2=1- sqrt(3)
sin x= 1+ sqrt(3), 1-sqrt(3)
x= arcsin(1+ sqrt(3))+ 2*pi*n,
x= arcsin(1- sqrt(3))+ 2*pi*n, принадлежит Z