Aleksandrovich-Mayatskikh
?>

Расскажите как от двух отнять три четвёртых

Алгебра

Ответы

borisova-Sergeevna
2-\frac{3}{4}=\frac{8}{4}-\frac{3}{4}=\frac{5}{4}=1\frac{1}{4}=1,25
Делаем из 2 дробь со знаменателем, как у \frac{3}{4} , так как по правилу сложения и вычитания дробей, знаменатели должны быть одинаковыми.
2=\frac{8}{4} (8:4=2)
Дальше выделяем целую часть, если возможно.
nadejdashin508
ВвоыоФункция arcsin(x) обозначает угол, синус которого равен х.
Это можно записать математически: sin(arcsin(x))=x.
Справедливо и обратное: arcsin(sin(x))=x.
Функция arcsin(x) - нечетная, как и обратная ей функция sin(x).
Это значит, что arcsin(-x) = - arcsin(x).
Поэтому
arcsin(-3/4) = -arcsin(3/4).
В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора
oaved2018
Переписывая уравнение в виде y=-(x-2)²+3=-x²+4x-1, замечаем, что график представляет собой квадратическую параболу. Так как коэффициент при x² равен -1<0, то ветви параболы направлены вниз. Первый член -(x-2)² обращается в 0 лишь при x=2, а пи других значениях х он отрицателен. Поэтому точка x=2 является вершиной параболы, в которой функция достигает своего наибольшего значения Ymax=y(2)=-2²+4*2-1=3. То есть координаты вершины есть (2;3). Чтобы найти координаты точек пересечения параболы с осью ОХ, надо решить уравнение x²-4x+1=0. Находим дискриминант D=(-4)²-4*1*1=12=(2√3)². Тогда x1=(4+2√3)/2=2+√3, x2=(4-2√3)/2=2-√3. Значит, (2+√3;0) и (2-√3;0) - координаты точек пересечения параболы с осью ОХ. Отсюда ясно, что если с>3, то прямая y=c не пересекает параболу, при c=3 прямая y=3 имеет с параболой одну общую точку -  вершину параболы. А при c<3 прямая пересекает параболу в 2 точках. ответ: при c<3.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Расскажите как от двух отнять три четвёртых
Ваше имя (никнейм)*
Email*
Комментарий*