1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
Формулировка и доказательство теоремы косинусов
Теорема косинусов является обобщением теоремы Пифагора для произвольного треугольника.
Формулировка теоремы косинусов
Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:
Теорема косинусов
Изображение для пояснения сути теоремы косинусов - квадрат стороны произвольного треугольника равен сумме квадратов двух других сторон минус удвоенное их произведение на косинус угла между ними
Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними
Полезные формулы теоремы косинусов:
Полезные формулы теоремы косинусов - сама теорема, нахождение косинуса угла по трем сторонам и нахождение самого угла по трем сторонам треугольника
Как видно из указанного выше, с теоремы косинусов можно найти не только сторону треугольника по двум сторонам и углу между ними, можно, зная размеры всех сторон треугольника, определить косинусы всех углов, а также вычислить величину любого угла треугольника. Вычисление любого угла треугольника по его сторонам является следствием преобразования формулы теоремы косинусов.
Доказательство теоремы косинусов
Теорема Косинусов
Рассмотрим произвольный треугольник ABC. Предположим, что нам известна величина стороны AC (она равна некому числу b), величина стороны AB (она равна некому числу c) и угол между этими сторонами, величина которого равна α. Найдем величину стороны BC (обозначив ее длину через переменную a)
Для доказательства теоремы косинусов проведем дополнительные построения. Из вершины C на сторону AB опустим высоту CD.
Найдем длину стороны AB. Как видно из рисунка, в результате дополнительного построения можно сказать, что
AB = AD + BD
Найдем длину отрезка AD. Исходя из того, что треугольник ADC является прямоугольным, нам известны длина его гипотенузы (b) и угол (α) то величину стороны AD можно найти из соотношения его сторон, пользуясь свойствами тригонометрических функций в прямоугольном треугольнике:
AD / AC = cos α
откуда
AD = AC cos α
AD = b cos α
Длину стороны BD найдем как разность AB и AD:
BD = AB - AD
BD = c − b cos α
Теперь запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:
для треугольника BDC
CD2 + BD2 = BC2
для треугольника ADC
CD2 + AD2 = AC2
Обратим внимание на то, что оба треугольника имеют общую сторону - CD. Определим ее длину для каждого треугольника - вынесем ее значение в левую часть выражения, а остальное - в правую.
CD2 = BC2 - BD2
CD2 = AC2 - AD2
Поскольку левые части уравнений (квадрат стороны CD) равны, то приравняем правые части уравнений:
BC2 - BD2 = AC2 - AD2
Исходя из сделанных ранее вычислений, мы уже знаем что:
AD = b cos α
BD = c − b cos α
AC = b (по условию)
А значение стороны BC обозначим как a.
BC = a
(Именно его нам и нужно найти)
Получим:
BC2 - BD2 = AC2 - AD2
Заменим буквенные обозначения сторон на результаты наших вычислений
a2 - ( c − b cos α )2 = b2 - ( b cos α )2
перенесем неизвестное значение (а) на левую сторону, а остальные части уравнения - на правую
a2 = ( c − b cos α )2 + b2 - ( b cos α )2
раскроем скобки
a2 = b2 + c 2 - 2c b cos α + ( b cos α )2 - ( b cos α )2
получаем
a2 = b2 + c 2 - 2bc cos α
Теорема косинусов доказана.
Случай, когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.
Поделитесь своими знаниями, ответьте на вопрос:
Как решать многочлены а именно стандартного вида.
Для примера: 2*a^2 + 4*a*x^7 - 3*a*b^3 + 4; 6 + 4*b^3 - многочлены, а выражение z/(x - x*y^2 + 4) не является многочленом потому, что оно не является суммой одночленов. Многочлен еще иногда называют полиномом, а одночлены которые входят в состав многочлена членами многочлена или мономами.
Комплексное понятие многочленаЕсли многочлен состоит из двух слагаемых, то его называют двучлен, если из трех - трехчлен. Названия четырехчлен, пятичлен и другие не используются, а в таких случаях говорят просто, многочлен. Такие названия, в зависимости от количества слагаемых, ставят все на свои места.
И термин одночлен становится интуитивно понятным. С точки зрения математики, одночлен является частным случаем многочлена. Одночлен это многочлен, который состоит из одного слагаемого.
Так же как и у одночлена, у многочлена есть свой стандартный вид. Стандартным видом многочлена называется такая запись многочлена, при которой все входящие в него в качестве слагаемых одночлены, записаны в стандартном виде и приведены подобные члены.
Стандартный вид многочленаПроцедура приведения многочлена к стандартному виду состоит в том, чтобы привести каждый из одночленов к стандартному виду, а потом все подобные одночлены между собой сложить. Сложение подобных членов многочлена называют приведением подобных.
Например, приведем подобные слагаемые в многочлене 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b.
Подобными здесь являются слагаемые 4*a*b^2*c^3 и 6*a*b^2*c^3. Суммой этих слагаемых будет одночлен 10*a*b^2*c^3. Следовательно, исходный многочлен 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b можно переписать в виде 10*a*b^2*c^3 - a*b. Эта запись и будет стандартным видом многочлена.
Из того, что любой одночлен можно привести к стандартному виду, следует также и тот факт, что любой многочлен можно привести к стандартному виду.
Когда многочлен приведен к стандартному виду, можно говорить о таком понятии как степень многочлена. Степенью многочлена называется наибольшая степень одночлена, входящего в данный многочлен.
Так, например, 1 + 4*x^3 – 5*x^3*y^2 – многочлен пятой степени, так как максимальная степень одночлена входящего в многочлен (5*x^3*y^2) пятая.
Вот инфа для решения , дерзай )