Скорее всего: исследоватьс первой и второй производных. Первая производная равна х^2-4x+3. Приравниваеме к 0, решаем квадратное уравнение, находим корни 1 и 3. Это стационарные точки, они разбивают обл. опр. функции ( всю числовую прямую) на 3 интервала. Так как на промежутках от минус бесконечности до 1 и от 3 до плюс бесконечности производная имеет знак +, функция на этих интервалах возрастает, а на промежутке от 1 до 3 функция убывает. Точка х=1 - точка максимума функции ( так как производная поменяла в ней знак с + на -, а х=3 - точка минимума функции.
Таперь находим вторую производную, она равна 2х-4. Решаем уравнение 2х-4=0, х=2 - точка перегиба, функция выпукла вверх, так как втрая производная в точке 2 поменяла свой знак с - на +.
1-ая задача:
Пусть Х - время, затраченное от станции до почты, тогда (1 - Х) - время, которое пешеход затратил на обратный путь.
Зная, что расстояние одинаковое, составим и решим уравнение:
6Х = 4 * (1 - Х)
6Х = 4 - 4Х
6Х + 4Х = 4
10Х = 4
Х = 0,4
Значит, 0,4 (ч.) - время, затраченное от станции до почты, тогда:
1. Каково время на обратный путь?
1 - 0,4 = 0,6 (ч.)
2. Чему равно расстояние от почты до станции?
6 * 0,4 = 2,4 (км.)
ответ: 2,4 км.
2-ая задача:
Пусть Х - скорость 1-ого пешехода, тогда (Х - 2) - скорость 2-ого пешехода
Зная, что расстояние между поселками 30 км., составим и решим уравнение.
3Х + 3 * (Х - 2) = 30
3Х + 3Х - 6 = 30
6Х - 6 = 30
6Х = 30 + 6
6Х = 36
Х = 6
Значит, 6 км/ч - скорость первого пешехода, тогда:
Какова скорость второго пешехода?
6 - 2 = 4 (км/ч)
ответ: 6 км/ч, 4 км/ч.
Поделитесь своими знаниями, ответьте на вопрос:
На каждой из трёх карточек написано одно из чисел: 1, 2, 3. какова вероятность того, что перевернув и перемешав их, вы первой возьмёте карточку с числом 1, а второй – с числом 2?