ПетровичЖивотовская1245
?>

Как находить уравнение оси симметрии параболы?

Алгебра

Ответы

Mariya987
Пример: 2x^2 + 3x - 1=y
a=2, b=3, c=-1
x(симметрии)= -b/2a= -3/4
галина

1)       ac2-ad+c3-cd-bc2+bd=  = (ac2 – ad) + (c3 –

bc2) + (bd – cd) = a·(c2 – d) + c2·(c – b) + d·(b     – c) = a·(c2 – d) +

c2·(c – b) – d·(c – b) = a·(c2 – d) + c2·(c – b) – d·(c – b) = a·(c2 –

d) + (c – b)·(c2 – d) = (c2 – d)·(a + c – b)

2)  mx2+my2-nx2-ny2+n-m= x2 ( m - n ) + y2 ( m - n ) - ( m - n ) = ( m-n ) (x2 + y2 - 1 )  

3)   am2+cm2-an+an2-cn+cn2= m2 (a + c ) + n2 ( a + c ) - n ( a + c ) = ( a+ c) ( m2 + n2 - n) 

4)   xy2-ny2-mx+mn+m2x-m2n= y2 ( x - n ) + m2 ( x - n) - m ( x - n ) = ( x-n) ( y2 + m2 - m ) 

5)   a2b+a+ab2+b+2ab+2=ab ( a + b + 2 )   + ( a+ b+ 2 ) = 2 ( a+ b + 2 ) 

6)   x2-xy+x-xy2+y3-y2=   x ( x –   y + 1) –   y 2 ( x –   y + 1)=( x –   y + 1)( x –   y 2 ).

Tyukalova
(5y - 2)(y + 3) = (3y + 2)(2y + 1)
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4                                                      y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7                (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7                                            8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Как находить уравнение оси симметрии параболы?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

diana-kampoteks
lugowskayatania2017
LidiyaBorzikh
Varagyant
gk230650
k-alexey9
Алексей Кирилл1094
zu87zu87
Semenovt
kizyaev6651
Vera_Shuklin
artbogema2016
proplenkusale88
svetarakityanskaya
Сергеевна-Пузанов