kazan-ugoop36
?>

1) решите уравнение 4sin^3 x+1=4sin^2 x+sinx 2) найдите все корни этого уравнения, принадлежащие отрезку [π; 2π]

Алгебра

Ответы

ekaterinava90
Замена sin x = t
4t^3 - 4t^2 - t + 1 = 0
4t^2*(t - 1) - (t - 1) = 0
(t - 1)(4t^2 - 1) = 0
(t - 1)(2t + 1)(2t - 1) = 0
1) t = sin x = 1; x = pi/2 + 2pi*k
2) t = sin x = -1/2; x = (-1)^k*(-pi/6) + pi*k
3) t = sin x = 1/2; x = (-1)^k*(pi/6) + pi*k

В промежуток [pi; 2pi] будет sin x < 0, поэтому подходят только корни из
2) пункта: x1 = 7pi/6; x2 = 11pi/6
arturusinsk5
Як ми вже знаємо з попереднього прикладу, в отриманому сплаві має бути 180.34 / 100 = 180.0, 34 = 61,2 кг цинку, в першому — 0,4 х, у другому — 0,3 у. отримуємо систему рівнянь: 0,4 х +0,3 у = 61,2 (маса цинку в отриманому сплаві дорівнює сумі мас у вихідних сплавах); х + у = 180 (маса отриманого сплаву дорівнює сумі мас вихідних сплавів)вирішуємо: 0,4 (180-у) +0,3 у = 61,2; х = 180-у72-0,4 у +0,3 у = 61,2; 0,1 у = 10,8; у = 108, х = 72.тобто треба взяти 108 кг 30%-ного сплаву і 72 кг 40%-ного.
kortikov77

Сторона данного  треугольника а(3) равна Р:3=6√3:3=2√3 дм

Формула радиуса окружности, описанной около правильного треугольника:

R=a/√3 => 

R=2√3:√3=2 дм

   Формула стороны правильного многоугольника через радиус вписанной окружности:

а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,

Для правильного шестиугольника  tg(180°:n)=tg30°=1/√3

a₆=2•2•1/√3=4/√3

P=6•4/√3=8√3 дм

—————

 Как вариант:   Правильный шестиугольник состоит из 6 равных правильных треугольников. 

    На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника.  Задача решается с т.Пифагора. 


3. периметр правильного треугольника, вписанного в окружность, равен 6 корней из 3 дм. найдите перим

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1) решите уравнение 4sin^3 x+1=4sin^2 x+sinx 2) найдите все корни этого уравнения, принадлежащие отрезку [π; 2π]
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vladburakoff5
Анастасия1097
сергеевич1958
Freelifecool797
Advantage9111
Низамов
Хасанбиевич Колесников716
Иванникова736
mariy-inkina8
Konstantinovna1936
Спивак
symkifm
alex13izmailov
gusinica23
Dodkhobekovich1683