Aleksandr768
?>

Найдите точки пересечения параболы и прямой у=9 у=-х

Алгебра

Ответы

Larax0819
\left \{ {{y=9} \atop {y=-x^2}} \right.
-x^2=9
x^2=-9
Нет решения, а значит и нет точек пересечения 

\left \{ {{y=9} \atop {y=x^2}} \right.
x^2=9
x_1=-3
x_2=3
\left \{ {{y_1=9} \atop {x_1=-3}} \right.
\left \{ {{y_2=9} \atop {x_2=3}} \right.
ответ: (-3;9) (3;9)
maximpr6
Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
\displaystyle D(y)=(-\infty,0)\cup(0,+\infty)

График y= \frac{6}{x} получается с растягивания графика y= \frac{1}{x}(обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности.
Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно,  график y= \frac{6}{x} тоже является гиперболой.

Область значений:
E(y)=(-\infty ;0)\cup (0;+\infty )

Так как функция y= \frac{1}{x} принимает отрицательные значения на луче  (-\infty,0) то и y= \frac{6}{x}  принимает отрицательные значения на луче  (-\infty,0)

Функция нечётна, так как:
f(-x)=-f(x)\\ \frac{6}{-x}=- \frac{6}{x}

Таблица первых значений и сам график во вложении.

Постройте график функции y=6/x . какова область определения функции? при каких значениях х функция п
Постройте график функции y=6/x . какова область определения функции? при каких значениях х функция п
slazurnaya
Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
\displaystyle D(y)=(-\infty,0)\cup(0,+\infty)

График y= \frac{6}{x} получается с растягивания графика y= \frac{1}{x}(обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности.
Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно,  график y= \frac{6}{x} тоже является гиперболой.

Область значений:
E(y)=(-\infty ;0)\cup (0;+\infty )

Так как функция y= \frac{1}{x} принимает отрицательные значения на луче  (-\infty,0) то и y= \frac{6}{x}  принимает отрицательные значения на луче  (-\infty,0)

Функция нечётна, так как:
f(-x)=-f(x)\\ \frac{6}{-x}=- \frac{6}{x}

Таблица первых значений и сам график во вложении.

Постройте график функции y=6/x . какова область определения функции? при каких значениях х функция п
Постройте график функции y=6/x . какова область определения функции? при каких значениях х функция п

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите точки пересечения параболы и прямой у=9 у=-х
Ваше имя (никнейм)*
Email*
Комментарий*