4 корня
Объяснение:
2sin(3x)*sin(x) + cos(2x) + 2 = 0; x € [-Π/2; 3Π/2]
Формулы:
sin(3x) = 3sin(x) - 4sin^3(x)
cos(2x) = 1 - 2sin^2(x)
Подставляем формулы в уравнение:
2sin(x)*(3sin(x) - 4sin^3(x)) + 1 - 2sin^2(x) + 2 = 0
6sin^2(x) - 8sin^4(x) - 2sin^2(x) + 3 = 0
8sin^4(x) - 4sin^2(x) - 3 = 0
Получили биквадратное уравнение относительно sin(x).
Сделаем замену sin^2(x) = y ≥ 0 при любом х.
8y^2 - 4y - 3 = 0
D/4 = 2^2 - 8*(-3) = 4 + 24 = 28 = (2√7)^2
y1 = (2 - 2√7)/8 < 0 - не подходит.
y2 = (2 + 2√7)/8 = (1 + √7)/4
Возвращаемся к переменной х
sin^2(x) = (1+√7)/4
1) sin x = -√((1+√7)/4)
x1 = -arcsin [√((1+√7)/4)] + 2Πn, n € Z
x2 = π + arcsin[√((1+√7)/4)] + 2Πn, n € Z
2) sin x = √((1+√7)/4)
x3 = arcsin[√((1+√7)/4)] + 2Πk, k € Z
x4 = π - arcsin[√((1+√7)/4)] + 2Πk, k € Z
Теперь нам надо найти количество корней на промежутке [-Π/2; 3Π/2]
Найдем, в какую четверть попадает каждый из корней. Обозначим:
t = √((1+√7)/4) ≈ 0,95
Можно и не вычислять, самое главное, что t € (0; 1)
arcsin(0,95) ≈ 72° = 2Π/5
Тоже можно не вычислять, главное, что arcsin t € (0, Π/2)
x1 = -arcsin t € (-Π/2; 0)
x2 = Π + arcsin t € (Π; 3Π/2)
x3 = arcsin t € (0; Π/2)
x4 = Π - arcsin t € (Π/2; Π)
Как видим, все 4 корня попадают во все 4 четверти, то есть в промежуток.
Образы базисных векторов: . Разложим образы по базису: , потому матрица оператора будет иметь вид .
(Основа? Понимаю под этим здесь базис, учитывая перевод). Тогда , подойдут, например, векторы .
, значит, собственные значения -- .
Собственное подпространство , отвечающее собственному значению есть в точности .
Для : . Базис можно выбрать, например, такой: и , то есть .
Для : . Базис: , то есть .
Для : . Базис: , то есть .
Не слышал понятия простого эндоморфизма, так что предположу, что под этим понимается простой элемент в кольце эндоморфизмов. Ну а тогда идея такая: представить матрицу в виде произведения двух матриц, ранг которых выше (ну а тут только ) подойдет. Тогда матрица не может делить никакую из них. Здесь надо заметить, что наша матрица диагонализуема (алгебраические кратности совпадают с геометрическими), ее можно привести к виду . Тогда , а ранги сомножителей . Поэтому не является простым.
После применения оператора получили новый базис (можно было изначально выбрать базис из собственных векторов и тогда бы получили диагональную матрицу из предыдущего пункта). Многочлен в этом (из первого пункта) базисе имеет компоненты . Легко видеть, что элемент отображается именно в . Но тогда .
Поделитесь своими знаниями, ответьте на вопрос:
Девочка от дома по направлению на запад 500 м.затем повернула на север и м.после этого она повернула на восток и ещё 100 м.на каком расстояние в метрах от дома оказалась девочка?