Уодной машины скорость на 25 км/ ч больше чем у другого, найти скорость этих машин если первая машина за 3 часа проходит 10 км больше дороги чем другая машина за 4 часа?
Таким образом, решая неравенство, мы находим, что оно выполняется на отрезках (-∞, -5) и (7, +∞).
Теперь мы можем найти наибольшее и наименьшее значение x на этих интервалах:
Наименьшее значение x на интервале (-∞, -5) равно -∞.
Наибольшее значение x на интервале (7, +∞) равно +∞.
Таким образом, разность наибольшего и наименьшего решений неравенства равна +∞ - (-∞) = +∞.
4. В начале года мальчики составляли 30% учеников класса, а девочек было 21. Пусть общее количество учеников класса в начале года равно Х.
Тогда количество мальчиков в начале года составляло 0.3Х.
В середине года в класс пришли 6 новых мальчиков, поэтому общее количество мальчиков стало 0.3Х + 6.
6 девочек перешли в другой класс, поэтому общее количество девочек стало 21 - 6 = 15.
Теперь общее количество учеников класса составляет (0.3Х + 6) + 15 = 0.3Х + 21.
Чтобы найти процент мальчиков в классе после этих изменений, мы можем сравнить количество мальчиков и общее количество учеников.
Процент мальчиков в классе будет равен (количество мальчиков / общее количество учеников) * 100.
Процент мальчиков в классе после изменений будет равен ((0.3Х + 6) / (0.3Х + 21)) * 100.
5. Для нахождения площади данной трапеции, мы должны использовать формулу:
Площадь = (сумма оснований * высота) / 2.
В данном случае, большее основание равно 18√2, а меньшее равно 6√2. Пусть высота равна h.
Тогда площадь = ((18√2 + 6√2) * h) / 2 = (24√2 * h) / 2 = 12√2 * h.
Таким образом, площадь этой трапеции равна 12√2 * h.
alexandrxzx09
07.07.2021
Добрый день! Я буду играть роль школьного учителя и помогу вам разобраться с вопросом.
Для определения приведённого квадратного уравнения, нужно вспомнить его общий вид, который выглядит следующим образом:
ax^2 + bx + c = 0,
где a, b, и c - это коэффициенты уравнения.
Теперь посмотрим на каждое из представленных уравнений и определим, является ли оно приведённым квадратным.
1) x^2 = 17x - 80.
В данном уравнении есть значения a, b, и c. a = 1, b = -17, c = -80. Следовательно, это квадратное уравнение, но оно не является приведённым, так как b не равно нулю.
2) x - 17x^2 - 8 = 0.
Это квадратное уравнение похоже на приведённое, но оно записано в порядке убывания степеней переменной. Для приведения его к стандартному виду, нужно поменять порядок слагаемых так, чтобы старший коэффициент был перед x^2. Приведенное квадратное уравнение должно выглядеть следующим образом: -17x^2 + x - 8 = 0.
3) 17x^2 = 0.
В данном уравнении b = 0, а a = 17 и c = 0, а значит, что уравнение является приведённым квадратным, так как b равно нулю.
4) 17x - x^2 = 80.
Данное уравнение имеет два слагаемых и тоже может быть приведено к стандартному виду. Перенесем все слагаемые влево, чтобы получить квадратное уравнение: x^2 - 17x + 80 = 0.
Школьникам иногда может быть сложно определить, является ли уравнение приведённым квадратным, особенно если они не знакомы с общим видом квадратного уравнения. В таком случае, рекомендуется проверять каждое уравнение на наличие слагаемых, содержащих переменную x в квадрате и x в первой степени. Если оба слагаемых присутствуют, то это приведённое квадратное уравнение.
Надеюсь, я смог помочь вам понять, как определить приведённое квадратное уравнение. Если у вас остались вопросы, пожалуйста, задайте их!
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Уодной машины скорость на 25 км/ ч больше чем у другого, найти скорость этих машин если первая машина за 3 часа проходит 10 км больше дороги чем другая машина за 4 часа?
2)75-10 =65(км/я) скорость 2-ой машины
3)65+25=90(км/ч)скорость первой маштны