Условием существования арифметической прогрессии является то, что разность между a(n) и a(n-1) остается неизменной для всех членов прогрессии: a₂-a₁=a₃-a₂=a(n)-a(n-1)=d, d - разность арифм. прогрессии. 4 предложенных последовательности рассмотрим на 1-х 3-х ее членах: 1. Последовательность квадратов натуральных чисел. a₁=1²; a₂=2²; a₃=3² => 4-1≠9-4 - данная последовательность не является арифметической прогрессией. 2. Последовательность всех правильных дробей, числитель которых на 2 меньше знаменателя. a₁=1/3; a₂=2/4; a₃=3/5 => (2/4-1/3=1/6; 3/5-2/4=1/10) 1/6≠1/10 - данная последовательность чисел - не арифметическая прогрессия. 3. Последовательность натуральных степеней числа 5. a₁=5¹; a₂=5²; a₃=5³ => 25-5≠125-25 - это не арифметическая прогрессия. 4. Последовательность натуральных чисел, кратных 5. Признак делимости на 5 - число должно оканчиваться на 5 или 0. a₁=5; a₂=10; a₃=15 => 10-5=15-10, d=5 - данная последовательность является арифметической прогрессией. ответ: 4)
nevori
18.04.2020
Решение задачи с условием, что три последовательных числа - четные. (Ибо сумма любых трех последовательных чисел не кратна 6).
Пусть x (x∈N) - первое из трех последовательных четных чисел, тогда второе и третье равны x+2 и x+4 соответственно.
Запишем сумму x+x+2+x+4=3x+6=3(x+6)
По признаку делимости, число кратно 6, если оно кратно 2 и 3.
Очевидно, что 3(x+6) кратно трем, т.к. есть множитель 3. С учетом того, что x - четное число, можно заявить, что x+6 делится на 2, а значит все выражение кратно 6.
8y-40+10y-8=10
8y+10y=10+8+40
18y=58