спец387
?>

(7a^2-13ab+10b^2)+(-3a^2+10ab-7b^2)

Алгебра

Ответы

ВасилийКлимова1695
Вот, удачи, можешь подписатся на меня ♥️
(7a^2-13ab+10b^2)+(-3a^2+10ab-7b^2)
office3
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
atvkaprolon
1)Все жители не могут быть лгунами, иначе  каждый из них сказал бы правду(противоречит условию).

2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.

3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается,  что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.

 4)из 2) и 3) следует, что: единственный вариант - это  когда на острове ровно 1007 лжецов.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

(7a^2-13ab+10b^2)+(-3a^2+10ab-7b^2)
Ваше имя (никнейм)*
Email*
Комментарий*