1) a= 2
2) a= -1
Объяснение:
Применим теорему Виета: если x₁ и x₂ корни уравнения x²+p·x+q=0, то
x₁ + x₂ = -p и x₁ · x₂ = q.
По условию, корни уравнения являются противоположными числами, то есть x₁ = -x₂, тогда x₁≠0 и x₂≠0 и:
-p = x₁ + x₂ = (-x₂) + x₂=0 и q = x₁ · x₂ = (-x₂) · x₂ = -x₂² <0.
Отсюда: p=0 и q<0.
1) Если дано x²+(a-2)·x+(a-6)=0, то по вышесказанному
p=a-2=0 ⇒ a=2 и q=a-6=2-6=-4<0. Тогда
x²+(2-6)=0 ⇔ x²=4 ⇔ x=±2.
2) Если дано x²+(a+1)·x+(a-8)=0, то по вышесказанному
p=a+1=0 ⇒ a= -1 и q=a-8=-1-8=-9<0. Тогда
x²+(-1-8)=0 ⇔ x²=9 ⇔ x=±3.
Дана функция
f(x)=4+3·x-x²
1) координаты точек пересечения графика с осью абсцисс:
f(x)=0 ⇔ 4+3·x-x²=0 ⇔ x²-3·x-4=0: D=(-3)²-4·1·(-4)=9+16=25=5²
x₁=(3-5)/(2·1)= -2/2= -1; x₂=(3+5)/(2·1)= 8/2= 4.
ответ: (-1; 0), (4; 0).
2) координаты точек пересечения графика с осью ординат:
f(0)=4+3·0-0²=4
ответ: (0; 4).
3) координаты точек пересечения графика с прямой y=-2·x²+3:
f(x)=y ⇔ 4+3·x-x²=-2·x²+3 ⇔ x²+3·x+1=0 : D=3²-4·1·1=9-4=5
ответ:
4) наибольшее значение функции:
f(x)=4+3·x-x²=-(x²-3·x-4)=-(x²-2·(3/2)·x+(3/2)²-(3/2)²-4)=
=-(x²-2·(3/2)·x+(3/2)²)+(3/2)²+4=4+9/4-(x-3/2)²=6,25-(x-1,5)²≤ 6,25
Отсюда, если (x-1,5)²=0, то получаем наибольшее значение функции.
ответ: 6,25.
Поделитесь своими знаниями, ответьте на вопрос:
Визначте кількість розв'язків нерівності: 2(3x-1)≤6x;
ответ: (-∞;+∞)
На фото решение