Объяснение:
Графиком функции является парабола;
множитель при х² меньше нуля - ветви вниз.
Область определения: значение функции (у) может быть определено для любого значения аргумента (х)
D(y) = R
Точки экстремума (точки, в которых производная обращается в 0 или не определена:
y' = (-x^2+4)' \\ y'=-2x +0 =-2x
Найдем значение х для у'=0
Для любого х > 0 у < 4
Для любого х < 0 у < 4
Точка (0;4) - точка максимума фунции.
Нижняя граница области значений функции отсутствует.
Следовательно, Область значений функции
E(y): y \in (- \inf ; 4]
Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими ее можно задать:
Табличный быстро определить конкретные значения без дополнительных измерений или вычислений.
Графический — наглядно.
Аналитический — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
Словесный .
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида Область определения область определения выглядит так
х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Поделитесь своими знаниями, ответьте на вопрос:
Решить найдите область определения функции 1. y= (квадратный корень) x в шестой степени. 2. y=1+x/3x-1 3. y=(квадратный корень всего выражения) 8x-2