a96849926288
?>

Реши линейное уравнение: 7, 8+15+(-6, 57k)=14+7, 8−6, 97k .

Алгебра

Ответы

ALLA1868

\sin(2x ) < \frac{1}{2}

2x < arcsin( \frac{1}{2} ) \\ 2x < \frac{\pi}{6}

разделим обе стороны на 2 чтоб упростить

x < \frac{\pi}{12}

Функция синуса принимает положительные значения в первом и втором квадрантах. Для определения второго решения вычитаем решение из

π

, чтобы найти решение во втором квадранте.

2x = \pi - \frac{\pi}{6}

x = \frac{5\pi}{12}

Период функции

sin(2х)

равен

π

, то есть значения будут повторяться через каждые

π

радиан в обоих направлениях

x = \frac{\pi}{12} + \pi(n). \frac{5\pi}{12} + \pi(n)

для всех целых n

Выбираем тестовое значение из каждого интервала и подставляем его в начальное неравенство, чтобы определить, какие интервалы удовлетворяют неравенству.

1.

\frac{\pi}{12} < x < \frac{5\pi}{12}

1 это ложно

2.

\frac{5\pi}{12} < x < \frac{13\pi}{12}

2 это истинно

3.

\frac{5\pi}{12} < x < \frac{17\pi}{12}

3 это ложно.

Итак

решение включает все истинные интервалы:

\frac{5\pi}{12} + \pi(n) < x < \frac{13\pi}{12}

для всех целых n

korneevaa

\sin(2x ) < \frac{1}{2}

2x < arcsin( \frac{1}{2} ) \\ 2x < \frac{\pi}{6}

разделим обе стороны на 2 чтоб упростить

x < \frac{\pi}{12}

Функция синуса принимает положительные значения в первом и втором квадрантах. Для определения второго решения вычитаем решение из

π

, чтобы найти решение во втором квадранте.

2x = \pi - \frac{\pi}{6}

x = \frac{5\pi}{12}

Период функции

sin(2х)

равен

π

, то есть значения будут повторяться через каждые

π

радиан в обоих направлениях

x = \frac{\pi}{12} + \pi(n). \frac{5\pi}{12} + \pi(n)

для всех целых n

Выбираем тестовое значение из каждого интервала и подставляем его в начальное неравенство, чтобы определить, какие интервалы удовлетворяют неравенству.

1.

\frac{\pi}{12} < x < \frac{5\pi}{12}

1 это ложно

2.

\frac{5\pi}{12} < x < \frac{13\pi}{12}

2 это истинно

3.

\frac{5\pi}{12} < x < \frac{17\pi}{12}

3 это ложно.

Итак

решение включает все истинные интервалы:

\frac{5\pi}{12} + \pi(n) < x < \frac{13\pi}{12}

для всех целых n

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Реши линейное уравнение: 7, 8+15+(-6, 57k)=14+7, 8−6, 97k .
Ваше имя (никнейм)*
Email*
Комментарий*