ответ:4 км/ч
Объяснение:
Пусть первоначальная скорость поезда будет х км/ч,тогда увеличенная скорость будет х+1 км/ч. Первоначальное запланированное время в пути тогда будет 60/х часов,а ускоренное время будет 60/х+1 часов.Разница между первоначальным и ускоренным временем в пути составляет 3 часа.Составляем уравнение: 60/х - 60/х+1 =3. Решаем: 60(х+1) - 60*х=3(х^2+х) 60х+60-60х=3х^2+3х 3х^2+3х-60=0 D=3^2-4*3*(-60)= 9+720=729 x1= (-3-27 )/2*3=-30/6=-5; х2=(-3+27)/2*3=24/6=4. х1 имеет отрицательное значение,а значит не удовлетворяет условию задачи - скорость поезда не может быть отрицательной ,а х2 положительное число,значит удовлетворяет условию задачи.Следовательно,первоначальная запланированная скорость поезда составляла 4 км/ч.
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
Поделитесь своими знаниями, ответьте на вопрос:
При каких значениях а корнем уравнения (а-4)х+4=a является любое число
Раскроем скобки
ax-4x+4=a
Перегруппируем
a(x-1)=4(x-1)
a=4