1) домножим левую и правую части на x. чтобы избавиться от дроби
3x^2 + 3 = 6x
3x^2 - 6x + 3 = 0
D = b^2 - 4ac = (-6)^2 - 4 *3 * 3 = 36 -36 = 0. [1 корень]
x= -b /2a = 6 / 6 =1
ответ: 1
2) приводим дроби к общему знаменателю
к первой дроби доп.множитель Х, ко второй (x^2 +2)
3x - (x^2 +2) -x^2 + 3x - 2
-->
x (x^2 + 2) x (x^2 + 2)
система:
{-x^2 + 3x - 2 = 0
{x (x^2 + 2) 0
-x^2 + 3x - 2 = 0
D = b^2 - 4ac = 9 - 8 = 1 2 корня
x1,2 = -b ± √D / 2a
x1 = -3 + 1 /-2 = -2/-2 = 1
x2 = -3 -1 / -2 = -4/-2 = 2
ответ: 1;2
фото прикреплю, так легче
а) начиная с n = 22; б) начиная с n = 39
Объяснение:
а) a₁ = 2; a₂ = 1.9; a₃ = 1.8 ... A=0
Разность арифметической прогрессии d = a₂ - a₁ = 1.9 - 2 = - 0.1
aₙ < 0
aₙ = a₁ + d · (n - 1)
a₁ + d · (n - 1) < 0
2 - 0.1 · (n - 1) < 0
2 - 0.1n + 0.1 < 0
0.1n > 2+0.1
0.1n > 2.1
n > 21
Наименьший номер n = 22
б) a₁ = 15,9; a₂ = 15,5; a₃ = 15,1 ... A = 0,9
Разность арифметической прогрессии d = a₂ - a₁ = 15,5 - 15,9 = - 0.4
aₙ < 0,9
aₙ = a₁ + d · (n - 1)
a₁ + d · (n - 1) < 0,9
15,9 - 0.4 · (n - 1) < 0,9
15,9 - 0.4n + 0.4 < 0,9
0.4n > 15,9 + 0.4 - 0,9
0.4n > 15,4
n > 38,5
Наименьший номер n = 39
Поделитесь своими знаниями, ответьте на вопрос:
5/x+3 -4/x-1 найти допустимые переменной в выражении
на ноль делить нельзя
x-1≠0;
x≠1;
x+3≠0;
x≠-3;
x ∈ (-∞;-3) ∪ (-3;1) ∪ (1;∞);