Рисунок смотрите в приложении (на нем изображены равные векторы).
Векторы равны, когда они имеют равные длины и одинаковое направление (и при этом лежат на параллельных прямых или на одной и той же прямой).а). Векторы и
равны по модулю (то есть, равны их длины), как стороны квадрата, но имеют разное направление. Как видно из рисунка, угол между ними равен
градусов (получаем, что это коллинеарные, но не равные векторы).
.
б). Векторы и
равны по длине, лежат на параллельных прямых и имеют одинаковое направление. Значит, они равны.
.
в). Векторы и
опять же имеют одинаковые длины. Но они никак не лежат на параллельных прямых, они являются перпендикулярными (так как угол квадрата -
градусов).
а) нет;
б) да;
в) нет.
)
ОДЗ: х≠0
\begin{gathered}x+ \frac{3}{x}+4 \leq 0 \\ \\ \frac{x^2+4x+3}{x} \leq 0 \end{gathered}x+x3+4≤0xx2+4x+3≤0
Раскладываем на множители:
x²+4x+3=0
D=4² -4*3=16-12=4
x₁=(-4-2)/2= -3
x₂=(-4+2)/2= -1
x² +4x+3=(x+3)(x+1)
\frac{(x+3)(x+1)}{x} \leq 0x(x+3)(x+1)≤0
Используем метод интервалов:
x(x+3)(x+1)≤0
x=0 x+3=0 x+1=0
x= -3 x= -1
- + - +
-3 -1 0
x= -4 - - - | -
x= -2 - + - | +
x= -0.5 - + + | -
x= 1 + + + | +
С учетом ОДЗ x∈(-∞; -3]U[-1; 0)
ответ: (-∞; -3]U[-1; 0).
2)
ОДЗ: x≠0
\begin{gathered}x- \frac{8}{x}-2\ \textgreater \ 0 \\ \\ \frac{x^2-2x-8}{x}\ \textgreater \ 0 \end{gathered}x−x8−2 \textgreater 0xx2−2x−8 \textgreater 0
Разложим на множители:
x²-2x-8=0
D=(-2)² -4*(-8)=4+32=36=6²
x₁=(2-6)/2= -2
x₂=(2+6)/2=4
x²-2x-8=(x+2)(x-4)
\frac{(x+2)(x-4)}{x}\ \textgreater \ 0x(x+2)(x−4) \textgreater 0
Метод интервалов:
x(x+2)(x-4)>0
x=0 x= -2 x=4
- + - +
-2 0 4
x= -3 - - - | -
x= -1 - + - | +
x= 1 + + - | -
x= 5 + + + | +
С учетом ОДЗ: x∈(-2; 0)U(4; +∞)
ответ: (-2; 0)U(4; +∞).
3) x²(x+3)>0
Метод интервалов:
x=0 x= -3
- + +
-3 0
x= -4 + - | -
x= -1 + + | +
x= 1 + + | +
x∈(-3; 0)U(0; +∞)
ответ: (-3; 0)U(0; +∞).
4)
(x-1)²(x-5)≤0
Метод интервалов:
x=1 x=5
- - +
1 5
x=0 + - | -
x=2 + - | -
x=6 + + | +
x∈(-∞; -5]
ответ: (-∞; -5].
5)
(x+3)²(x²-10x+21)≥0
Разложим на множители:
x²-10x+21=0
D=(-10)² -4*21=100-84=16=4²
x₁=(10-4)/2=3
x₂=(10+4)/2=7
x²-10+21=(x-3)(x-7)
Метод интервалов:
(x+3)²(x-3)(x-7)≥0
x= -3 x=3 x=7
+ + - +
-3 3 7
x= -4 + - - | +
x= 0 + - - | +
x= 4 + + - | -
x= 8 + + + | +
x∈(-∞;3]U[7; +∞)
ответ: (-∞; 3]U[7; +∞)
6)
(x-1)(x²-7x+6)≥0
x∈(-6; 1)
ответ: (-6; 1).
8)
(x-4)³(7x-x²-10)≤0
-(x-4)³(x²-7x+10)≤0
(x-4)³(x²-7x+10)≥0
Разложим на множители:
x² -7x+10=0
D=(-7)² -4*10=49-40=9=3²
x₁=(7-3)/2=2
x₂=(7+3)/2=5
x²-7x+10=(x-2)(x-5)
Метод интервалов:
(x-4)³(x-2)(x-5)≥0
x=4 x=2 x=5
- + - +
2 4 5
x=0 - - - | -
x=3 - + - | +
x=4.5 + + - | -
x=6 + + + | +
x∈[2; 4]U[5; +∞)
ответ: [2; 4]U[5; +∞).
Поделитесь своими знаниями, ответьте на вопрос:
Выражение 28(а-1)+52(а+6) и найдите его значение при а=5, 867
при а=5.867
ответ: 753.36