Объяснение:
1) |4-x|<6
__x<4__x=4__x>4__
+ 0 - 4-x
x<4
4-x<6⇒-x<6-4⇒-x<2⇒x>-2 x∈(-2;4]
x>4
-(4-x)<6⇒-4+x<6⇒x<6+4⇒x<10 x∈(4;10)
x∈(-2;10) целых решений : -1,0,1,2,3,4,5,6,7,8,9=11
2) 2|x+3|≤|x-1|⇒2|x+3|-|x-1|≤0
x<-3x=-3-3≤x<1x=1x≥1
- 0 + + x+3
- - 0 + x-1
x<-3
2(-x-3)-(-x+1)≤0⇒-2x-6+x-1≤0⇒-x-7≤0⇒-x≤7⇒x≥-7 x∈[-7;-3)
-3≤x<1
2(x+3)-(-x+1)≤0⇒2x+6+x-1≤0⇒3x≤-5⇒x≤-5/3 x∈[-3;-5/3]
x≥1
2x+6-(x-1)≤0⇒2x+6-x+1≤0⇒x≤-7 x∈∅
x∈[-7;-3)U[-3;-5/3] целых решений: -7,-6,-5,-4,-3,-2=6
Поделитесь своими знаниями, ответьте на вопрос:
Якщо двозначне число поділити на суму його цифр, то в частці отримаємо 4 і в остачі 3. якщо ж це двозначне число поділити на добуток його цифр , то в частці отримаємо 3 а в остачі 5. знайдіть це число
1.
1) x^2+8x+15=0
Запиши у вигляді суми
x^2+5x+3x+15=0
Розклади вирази на множники
x×(x+5)+3(x+5)=0
Розклади вираз на множники
(x+5)×(x+3)=0
Розклади на можливі випадки
x+5=0
x+3=0
Розв'яжи рівняння
Відповідь: x1 = -5; x2= -3
(Далі робиш по такому же принципу)
2) 2x^2-3x+1=0
2x^2-x-2x+1=0
x×(2x-1)-(2x-1)=0
(2x-1)×(x-1)=0
2x-1=0
x-1=0
Відповідь: x1 = 0,5; x2=1
3) -3x^2+2x+1=0
3x^2-2x-1=0
3x^2+x-3x-1=0
x×(3x+1)-(3x+1)=0
(3x+1)×(x-1)=0
3x+1=0
x-1=0
Відповідь: x1= -1/3; x2= 1
4) x^4+5x^2-36=0
(t=x^2)
t^2+5t-36=0
t= -9
t=4
x^2= -9
x^2= 4
Відповідь: x1= -2; x2= 2
2.
1) x^2-2x-8
x^2+2x-4x-8
x×(x+2)-4(x+2)
(x+2)×(x-4)
2) 2x^2-5x+3
2x^2-2x-3x+3
2x×(x-1)-3(x-1)
(x-1)×(2x-3)
3.
1) x^2+8x-9/2x+18
x^2+9x-x-9/2(x+9)
x×(x+9)-(x+9)/2(x+9)
(x+9)×(x-1)/2(x+9)
x-1/2
2) x^2-2x-8/x^2-16
x^2+2x-4x-8/(x-4)×(x+4)
x×(x+2)-4(x+2)/(x-4)×(x+4)
(x+2)×(x-4)/(x-4)×(x+4)
x+2/x+4
4.
1) m^3+2m^2-8m/m^2+4m
m×(m^2+2m-8)/m×(m+4)
m×(m+4)-2(m+4)/m+4
(m+4)×(m-2)/m+4
m-2
Якщо m = -1, то:
-1-2= -3
Відповідь: -3