Поэтому указать промежуток значительно проще чем его решить. Вот смотри само (х²+1) есть уравнение где всегда больше или равно нулю, но так как область определения х≠0 (то есть в знаменателе стоит х, если вместо него подставить нуль, то получиться, что мы делим на нуль, что категорично нельзя делать, на нуль нельзя делить). Выходит, что х принимает любое значение как отрицательное, так и положительное, конечно кроме нуля. Теперь допускаем: 1) Рассмотрим первое слагаемое: мы сказали что (х²+1)≥0 при любом х, тогда пусть х (то что в знаменателе) будет положительное число. Положительное делим на положительное = положительное. рассмотрим второе слагаемое: положительное делим на положительное = положительное. В итоге, положительное + положительное = положительное, а у нас равно -2,5, то есть отрицательное. Значит при х>0 уравнение не выходит.
2) Рассмотрим первое слагаемое: также числитель ≥0, ну а х теперь возьмем <0, то есть отрицательное. положительное делим на отрицательное = отрицательное. Рассмотрим второе слагаемое: отрицательное делим на положительное = отрицательное. Имеем отрицательное минус отрицательное = отрицательное то есть нашему -2,5.
Выходит что лишь в промежутке (-бескон; 0) (где нуль исключаем ) находиться решение нашего уравнения. Вот так
ASRodichev
24.03.2020
D(y)=R a<0 Ветки параболы в низ Нули функции -x^2+2x+8=0 D=36 корень из D=6 X1=(-2+6)/-2=-2 точка (-2;0) X2=(-2-6)/-2=4 точка(4;0) Координаты вершин параболы M=-b/2a=-2/-2=1 N=-D/4a=-36/-4=9 точка (1;9) Дальше просто отметь точки и дорисуй параболу f возрастает на промежутке( - бесконечность;1) бесконечность поставь символом :) f понижается на промежутке (1;+бесконечность) Нули (-2;0),(4;0) Функция отрицательна при ( - бесконечность;-2) U (4;+бесконечность)
Решение задания приложено