KonovalovKonstantinovna1306
?>

Диагонали ромьа 10 и 12 мм найти площадб ромьа

Алгебра

Ответы

gumirovane2294

Площадь ромба 1/2 произведения диагоналей.

S=10*12:2=60mm^{2}

Chausmonk4

Площадь ромба равна полупроизведению диагоналей:

S=\dfrac{1}{2} \cdot 10 \cdot 12=5 \cdot 12=60.


ответ: 60 мм².

Антонович937

Парабола: определение, свойства, построение

Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением

y2=2px  

при условии p>0.

Из уравнения (1) вытекает, что для всех точек параболы x≥0. Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Форма параболы известна из курса средней школы, где она встречается в качестве графика функции y=ax2. Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством 2p=a−1.

Фокусом параболы называется точка F с координатами (p/2,0) в канонической системе координат.

Директрисой параболы называется прямая с уравнением x=−p/2 в канонической системе координат

Утверждение.

Расстояние от точки M(x,y), лежащей на параболе, до фокуса равно

r=x+p2

Доказательство.

Вычислим квадрат расстояния от точки M(x,y) до фокуса по координатам этих точек: r2=(x−p/2)2+y2 и подставим сюда y2 из канонического уравнения параболы. Мы получаем

r2=(x−p2)2+2px=(x+p2)2.

Отсюда в силу x≥0 следует равенство

igorshevkun

Парабола: определение, свойства, построение

Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением

y2=2px  

при условии p>0.

Из уравнения (1) вытекает, что для всех точек параболы x≥0. Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Форма параболы известна из курса средней школы, где она встречается в качестве графика функции y=ax2. Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством 2p=a−1.

Фокусом параболы называется точка F с координатами (p/2,0) в канонической системе координат.

Директрисой параболы называется прямая с уравнением x=−p/2 в канонической системе координат

Утверждение.

Расстояние от точки M(x,y), лежащей на параболе, до фокуса равно

r=x+p2

Доказательство.

Вычислим квадрат расстояния от точки M(x,y) до фокуса по координатам этих точек: r2=(x−p/2)2+y2 и подставим сюда y2 из канонического уравнения параболы. Мы получаем

r2=(x−p2)2+2px=(x+p2)2.

Отсюда в силу x≥0 следует равенство

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Диагонали ромьа 10 и 12 мм найти площадб ромьа
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Shlapakov1911aa
Шавкат кызы
Dushko
orinvarostov
optima3559
narkimry134
gordeevadesign2986
Valentinovna
Viktorovich395
Darialaza
Veselova
АлександрАлександровна
koll23
si0000
maslprod