1) a= 2
2) a= -1
Объяснение:
Применим теорему Виета: если x₁ и x₂ корни уравнения x²+p·x+q=0, то
x₁ + x₂ = -p и x₁ · x₂ = q.
По условию, корни уравнения являются противоположными числами, то есть x₁ = -x₂, тогда x₁≠0 и x₂≠0 и:
-p = x₁ + x₂ = (-x₂) + x₂=0 и q = x₁ · x₂ = (-x₂) · x₂ = -x₂² <0.
Отсюда: p=0 и q<0.
1) Если дано x²+(a-2)·x+(a-6)=0, то по вышесказанному
p=a-2=0 ⇒ a=2 и q=a-6=2-6=-4<0. Тогда
x²+(2-6)=0 ⇔ x²=4 ⇔ x=±2.
2) Если дано x²+(a+1)·x+(a-8)=0, то по вышесказанному
p=a+1=0 ⇒ a= -1 и q=a-8=-1-8=-9<0. Тогда
x²+(-1-8)=0 ⇔ x²=9 ⇔ x=±3.
1) a= 2
2) a= -1
Объяснение:
Применим теорему Виета: если x₁ и x₂ корни уравнения x²+p·x+q=0, то
x₁ + x₂ = -p и x₁ · x₂ = q.
По условию, корни уравнения являются противоположными числами, то есть x₁ = -x₂, тогда x₁≠0 и x₂≠0 и:
-p = x₁ + x₂ = (-x₂) + x₂=0 и q = x₁ · x₂ = (-x₂) · x₂ = -x₂² <0.
Отсюда: p=0 и q<0.
1) Если дано x²+(a-2)·x+(a-6)=0, то по вышесказанному
p=a-2=0 ⇒ a=2 и q=a-6=2-6=-4<0. Тогда
x²+(2-6)=0 ⇔ x²=4 ⇔ x=±2.
2) Если дано x²+(a+1)·x+(a-8)=0, то по вышесказанному
p=a+1=0 ⇒ a= -1 и q=a-8=-1-8=-9<0. Тогда
x²+(-1-8)=0 ⇔ x²=9 ⇔ x=±3.
Поделитесь своими знаниями, ответьте на вопрос:
Хватит ли 90 м изгороди чтобы огородить прямоугольный дачный участок одна сторона которого на 10 меньше другого а если его площадь равна 6 а? ответ объясните
1) Найдем длины сторон участка прямоугольной формы.
Пусть х м - длина одной стороны, тогда
(х-10) м - длина другой стороны этого участка.
ОДЗ: x>0
По условию его площадь равна 6 а, т.е. 600 м², получаем уравнение:
х·(х-10) = 600
х² - 10х - 600 = 0
D = 100 - 4·1·600 = 100+2400 = 2500 = 50²
x₁= - 20<0 не удовлетворяет ОДЗ
х₂ = 30 м - длина одной стороны,
30-10=20 м - длина другой стороны этого участка.
2) Найдем периметр участка.
2· (30+20) = 2·50 = 100 м
3) Длина изгороди равна 90 м, а периметр равен 100 м.
90 < 100
ответ: НЕ хватит 90 м изгороди для данного участка.