ekaterinaorl1998
?>

Решите плз, 70 а) (3x-2)*(2-x)= б)(2x-y)*(3y-x)= в)3x*(x-+y)*(3x-y) г)(3x-2) во второй степени= д)2(x-3)*(x+1)=

Алгебра

Ответы

evavard

а)

(3x - 2) \times (2 - x) = 6x - 3x {}^{2} - 4x + 2x = - 3x {}^{2} + 8x - 4

б)(2х-у)*(3у-х)=3у-х

в)3х*(х-у)-(х+у)*(3х-у)=3х²-3ху+3х²у+3ху²

г)(3х-2)²=9х²-12х+4

д) 2(х-3)*(х+1)=2*1(х+1)=2х+2

stairov536

y= -x² + 4x - 3

Объяснение:

Построить график функции, это парабола cо смещённым центром, ветви параболы направлены вниз.

а)найти  координаты вершины параболы:  

х₀ = -b/2a = -4/-2 = 2

y₀ = -(2)²+4*2-3 = -4+8-3 = 1  

Координаты вершины (2; 1)

б)Ось симметрии = -b/2a     X = -4/-2 = 2

в)найти точки пересечения параболы с осью Х, нули функции:

y= -x²+ 4x - 3​

 -x²+ 4x - 3​​=0

  x²- 4x + 3​​=0, квадратное уравнение, ищем корни:

  х₁,₂ = (4±√16-12)/2

  х₁,₂ = (4±√4)/2

  х₁,₂ = (4±2)/2            

  х₁ = 1            

  х₂ = 3    

Координаты нулей функции (1; 0)  (3; 0)

г)Найти точки пересечения графика функции с осью ОУ.

Нужно придать х значение 0: у= -0+0-3=-3

Также такой точкой является свободный член уравнения c, = -3

Координата точки пересечения (0; -3)

д)для построения графика нужно найти ещё несколько

   дополнительных точек:

   х=-1     у= -8      (-1; -8)

   х= 0    у= -3      (0; -3)

   х=4     у= -3       (4;-3)

   х= 5     у= -8      (5;-8)

Координаты вершины параболы  (2; 1)

Координаты точек пересечения параболы с осью Х: (1; 0)  (3; 0)

Координаты дополнительных точек: (-1; -8)  (0; -3)  (4;-3)  (5;-8)

e)В первой, третьей и четвёртой четвертях.

Larisaodinets5
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. глава 5. решение треугольников 5.1. прямоугольный треугольник  аксиомы 1.4 и 2.1 позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. до сих пор не было связи между величинами углов и длинами отрезков. с введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. рассмотрим соотношения между сторонами и углами прямоугольного треугольника. 1  рисунок 5.1.1.  прямоугольный треугольник. косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. пусть угол (bac) – искомый острый угол. так, например, для угла bac (рис. 5.1.1) теорема 5.1.  косинус угла зависит только от градусной меры угла и не зависит от расположения и размеров треугольника. доказательство  пусть abc и a1b1c1 – два прямоугольных треугольника с одним и тем же углом при вершинах a и a1, равным α . построим треугольник ab2c2, равный треугольнику a1b1c1, как показано на рис. 5.1.2. это возможно по аксиоме 4.1. так как углы a и a1 равны, то b2 лежит на прямой ab. прямые bc и b2c2 перпендикулярны прямой ac, и по следствию 3.1 они параллельны. по теореме 4.13 2  рисунок 5.1.2.  к теореме 5.1. но по построению ac2 = a1c1; ab2 = a1b1, следовательно, что и требовалось доказать. теорема 5.2.  теорема пифагора. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. модель 5.2. доказательство теоремы пифагора. на рисунке 5.1.3 изображен прямоугольный треугольник. bc и ac – его катеты, ab – гипотенуза. по теореме bc2 + ac2 = ab2. доказательство  пусть abc – данный прямоугольный треугольник с прямым углом при вершине c. 3  рисунок 5.1.3.  к доказательству теоремы пифагора. проведем высоту cd из вершины c. по определению из треугольника acd и из треугольника abc. по теореме 5.1 и, следовательно, . аналогично из δ cdb, из δ acb, и отсюда ab · bd = bc2. складывая полученные равенства и, замечая, что ad + bd = ab, получаем ac2 + bc2 = ab · ad + ab · bd = ab (ad + bd) = ab2. теорема доказана. в прямоугольном треугольнике любой из катетов меньше гипотенузы. косинус любого острого угла меньше единицы. пусть [bc] – перпендикуляр, опущенный из точки b на прямую a, и a – любая точка этой прямой, отличная от c. отрезок ab называется наклонной, проведенной из точки b к прямой a. точка c называется основанием наклонной. отрезок ac называется проекцией наклонной. с теоремы пифагора можно показать, что если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше. синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. по определению тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. для угла (bac) прямоугольного треугольника, изображенного на рис. 5.1.1, имеем так же как и косинус, синус угла и тангенс угла зависят только от величины угла. 4  рисунок 5.1.4. из данных определений получаем следующие соотношения между углами и сторонами прямоугольного треугольника: если α – острый угол прямоугольного треугольника, то катет, противолежащий углу α , равен произведению гипотенузы на sin α;  катет, прилежащий к углу α , равен произведению гипотенузы на cos α;  катет, противолежащий углу α , равен произведению второго катета на tg α.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите плз, 70 а) (3x-2)*(2-x)= б)(2x-y)*(3y-x)= в)3x*(x-+y)*(3x-y) г)(3x-2) во второй степени= д)2(x-3)*(x+1)=
Ваше имя (никнейм)*
Email*
Комментарий*