Ярослав
?>

Какое наибольшее количество чисел можно выбрать среди натуральных чисел, не превосходящих 100, так, чтобы ни сумма, ни произведение никаких двух различных выбранных чисел не делились на 100?

Алгебра

Ответы

ajuli2

90 чисел.

Объяснение:

Нам подходят все натуральные числа ≤ 100.

Рассмотрим сумму двух чисел.

Заметим, что 0 нацело делится на 100.

Любая сумма чисел этого числа будет ≤18, но при этом сумма чисел этого числа всегда будет больше нуля. Поскольку 0 не является натуральным числом в математике.

Теперь рассмотрим произведение двух чисел этого числа.

a \times b = 100

где:

a принимает значения — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

b принимает значения — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Заметим, что a ≠ 0, поскольку число не может начинаться с нуля.

Рассмотрим, если b = 0, то таких чисел:

10 \times 1 = 10

То есть, вот эти числа: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

Всего, подходящих нам чисел: 100 - 10 = 90 чисел.

Евгеньевич-Куликов1614

(-бесконечности ; -10] и (7; +бесконечности)

Объяснение:

Запишем все под одной дробью:

\frac{2x + 3 - 1(x - 7)}{x - 7} \geqslant 0

Найдём область допустимых значений:

х-7≠0, то есть х ≠ 7

Раскроем скобки и решим:

\frac{2x+ 3 - x + 7}{x - 7} \geqslant 0

\frac{x + 10}{x - 7} \geqslant 0

Рассмотрим все возможные случаи (знаменатель строго больше нуля, так как если он будет равен нулю, выражение потеряет смысл):

1. Когда и знаменатель, и числитель больше 0

x + 10 \geqslant 0 \\ x - 7 0

2. Когда оба меньше 0

x + 10 \leqslant 0 \\ x - 7 < 0

1.

x \geqslant - 10 \\ x 7

То есть х принадлежит ( 7; +бесконечности)

Так как 7 не удовлетворяет ОДЗ, то скобки круглые

2.

x \leqslant - 10 \\ x < 7

То есть х принадлежит (- бесконечности ; - 10]

Найдём объединение:

Х принадлежит (-бесконечности ; -10] и (7; +бесконечности)

andreykrutenko

Задание № 1:

Найдите последнюю ненулевую цифру значения произведения 40^50*50^40?

40^{50}*50^{40}=4^{50}*10^{50}*5^{40}*10^{40}=&#10;(2^2)^{50}*5^{40}*10^{50}*10^{40}= \\ =2^{100}*5^{40}*10^{90}&#10;=2^{60}*2^{40}*5^{40}*10^{90} = \\ =2^{60}*10^{40}*10^{90}=2^{60}*10^{130}

10^130 нас не интересует. Попробуем повозводить 2 в степень:

2^1=2, 2^2=4, 2^3=8, 2^4=16, 2^5=32

Пятая степень, как и первая, оканчивается на 2. Образуется своего рода цикл.

Чтобы узнать последнюю цифру степени N, нужно N разделить на 4. Остаток от деления соответствует степени, последняя цифра которой совпадает с последней цифрой степени N. Остаток 0 соответствует 4-ой степени.

60/4=15, остаток 0 – 4 степень оканчивается на 6, значит и 60 степень оканчивается на 6

ОТВЕТ: 6

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какое наибольшее количество чисел можно выбрать среди натуральных чисел, не превосходящих 100, так, чтобы ни сумма, ни произведение никаких двух различных выбранных чисел не делились на 100?
Ваше имя (никнейм)*
Email*
Комментарий*