В решении.
Объяснение:
Известно, что для того, чтобы дробь имела смысл, знаменатель её должен быть больше нуля. Поэтому искать значения х следует через неравенство:
х² - 12х + 20 > 0
Приравнять к нулю и решить как квадратное уравнение:
D=b²-4ac =144 - 80 = 64 √D= 8
х₁=(-b-√D)/2a
х₁=(12-8)/2
х₁=4/2
х₁=2;
х₂=(-b+√D)/2a
х₂=(12+8)/2
х₂=20/2
х₂=10.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х= 10, отмечаем эти точки схематично, смотрим на график.
На графике ясно видно, что х может принимать любые значения, кроме х=2 и х=10, знаменатель при таких значениях х равен нулю, что недопустимо.
Решение уравнения: х∈R (все значения х); х≠2; х≠10 (кроме 2 и 10).
Поделитесь своими знаниями, ответьте на вопрос:
Решить факториалы! третий пример!
Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4)=7