84
Объяснение:
Автобусы составляют 5/14 всех машин автопарка, грузовики -7/18 остальных. Кроме них в парке 33 легковые машины. Сколько всего машин в автопарке?
кроме автобусов в парке есть остальные машины. Из условия видно что остальных машин 18/18, из которых 7/18 грузовики, и 11/18 – 33 легковых машины
Если 11/18 =33, то 7/18 составит 33/11*7=21 грузовик
Теперь видим, что 33 легковых и 21 грузовик (это 54 машины) составляют 9/14 от всех машин в парке. То есть 9/14=54, а 5/14, которые автобусы, соответственно равны 54/9*5=30
Откуда находим: 33 легковых+21 грузовик+30 автобусов=84 машины
1. Формула которая была применена это, формула отрицательной степени дроби.
т.е эта формула говорит что дробь с отрицательной степенью "-n", равен дроби обратной с положительной степенью "n". Или своими словами дробь перевернули и степень лишилась минуса..
2. первую дробь переписали, дроби умножаются.
А на вторую дробь применили одно из свойств степени:
И в данном случае "а - числитель" это выражение поэтому степень распределяется на каждый член этого выражения: (a^(-2)×b^(3))³
И выполняется ещё одно свойство степени:
и тоже распределяется на каждый член выражения:
a^(-2×3)×b^(3×3)=a^(-6)×b^(9).
С числителем разобрались, переходим к знаменателю: 3, его также возводим в степень "3" по первому свойству которую я вам написал.
3. Чтобы умножить дробь на дробь, нужно: 1. Числитель первой дроби умножить на числитель второй дроби, и результат записать в числитель новой дроби. 2. Знаменатель первой дроби умножить на знаменатель второй дроби, и результат записать в знаменатель той же самой новой дроби. т.е:
4. В числителе 9, и в знаменателе 27 успешно сокращаются на 9.
т.е и 9, и 27 делятся на 9.
в числителе остаётся. a^(-6)×b^(9).
В знаменателе "3" которая осталась от 27 после сокращения, умножается на 2, потому что от перемен мест множителей, произведение не меняется. получаем 6×a^(-3)×b(5).
5. Степени у оснований делителей сокращаются.
по свойству степени:
a^(-6)÷a^(-3)=a^(-6-(-3))=a^(-6+3)=a^(-3). (числитель)
b^(9)÷b^(4)=b^(9-4)=b^5; также у нас в знаменателе была "6". Поэтому знаменатель принимает такой вид: 6×b^(5)
дробь преобразовалась в такую:
т.е a^(-3) делится на 6b^(5).
Чтобы поделить что-то на дробь, нужно: это "что-то" умножить на дробь обратную данной. т.е:
Поделитесь своими знаниями, ответьте на вопрос:
Сколько корней имеет уравнение ? 6х-5=4+х+1 ! ! 10
1 корень
Объяснение:
6x - x = 4 + 1 + 5
5x = 10
x = 2