1.Область определения функции: x ∈ R, или -∞ < x < ∞.
2. Нули функции. Точки пересечения графика функции с осью ОХ.
2х² - х⁴ = 0, х²(2 - х²) = 0. Тогда х² = 0 и (или) 2 - х² = 0.
x₁ = 0.
x₂ = √2.
х₃ = -√2.
Точки пересечения графика функции с осью ОУ при х = 0 ⇒ у = 0.
3. Промежутки знакопостоянства функции.
Для нахождения промежутков знакопостоянства функции y=f(x) надо решить неравенства f(x)>0, f(x)<0.
По пункту 2 имеем 4 промежутка значений аргумента, в которых функция сохраняет знак:
(−∞;−√2), (−√2;0), (0;√2), (√2;+∞).
Для того, чтобы определить знак функции на каждом из этих промежутков, надо найти значение функции в произвольной точке из каждого промежутка. Точки выбираются из соображений удобства вычислений.
x = -2 -1 1 2
y = -8 1 1 -8.
В промежутках (−∞;−√2) и (√2;+∞) функция принимает отрицательные значения, в промежутках (−√2;0) и (0;√2) функция принимает положительные значения.
4. Симметрия графика (чётность или нечётность функции).
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
- x^{4} + 2 x^{2} = - x^{4} + 2 x^{2}
- Да
- x^{4} + 2 x^{2} = - -1 x^{4} - 2 x^{2}
- Нет
Значит, функция является чётной.
5. Периодичность графика - нет.
6.Точки разрыва, поведение функции в окрестностях точек разрыва, вертикальные асимптоты - нет.
7. Интервалы монотонности функции, точки экстремумов, значения функции в точках экстремумов.
Находим производную заданной функции:
y' = 4x - 4x³.
Приравниваем производную нулю: 4x - 4x³ = 4x(1 - x²) = 0,
4x = 0, x = 0.
x² = 1, х = 1, x = -1.
Критических точек три: х = 0, х = 1, x = -1.
Находим значения производной левее и правее от критических.
x = -2 -1 -0.5 0 0.5 1 2
y' = 24 0 -1.5 0 1.5 0 -24.
Где производная положительна - функция возрастает, где отрицательна - там убывает.
Убывает на промежутках (-oo, -1] U [0, oo).
Возрастает на промежутках (-oo, 0] U [1, oo).
8. Интервалы выпуклости, точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0.
Вторая производная 4 \left(- 3 x^{2} + 1\right) = 0.
Решаем это уравнение.
Корни этого уравнения:
x_{1} = - \frac{\sqrt{3}}{3}
x_{2} = \frac{\sqrt{3}}{3}
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-sqrt(3)/3, sqrt(3)/3].
Выпуклая на промежутках (-oo, -sqrt(3)/3] U [sqrt(3)/3, oo).
9. Поведение функции в бесконечности. Наклонные (в частности, горизонтальные) асимптоты - нет.
10. Дополнительные точки, позволяющие более точно построить график
x∈[-1, 1)∪(3, 5]
Объяснение:
Решить систему неравенств:
х²-4х+3<=8
(x-3)(x-1)>0
Первое неравенство. Решить как квадратное уравнение:
х²-4х+3=8
х²-4х+3-8=0
х²-4х-5=0, ищем корни:
х₁,₂=(4±√16+20)/2
х₁,₂=(4±√36)/2
х₁,₂=(4±6)/2
х₁= -2/2
х₁= -1
х₂=10/2
х₂=5
Начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= -1 и х=5. По графику ясно видно, что у<=0 при х от -1 до 5, то есть, решения неравенства находятся в интервале
х∈ [-1, 5], это решение первого неравенства.
Неравенство нестрогое, значения х= -1 и х=5 входят в число решений неравенства, скобки квадратные.
Второе неравенство. Также решим как квадратное уравнение, удобнее определять интервалы решений неравенства:
(x-3)(x-1)>0
х²-х-3х+3>0
х²-4х+3>0, ищем корни:
х₁,₂=(4±√16-12)/2
х₁,₂=(4±√4)/2
х₁,₂=(4±2)/2
х₁=2/2
х₁=1
х₂=6/2
х₂=3
Снова чертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 1 и х=3. По графику ясно видно, что у>0 при х влево и вправо от точек пересечения параболой оси Ох, то есть,
х∈(-∞, 1)∪(3, +∞). Это решение второго неравенства.
Неравенство строгое, скобки круглые.
Теперь нужно найти пересечение решений неравенств, то есть, такое решение, которое подходит и первому, и второму неравенствам.
На числовой оси отмечаем точки -1, 1, 3, 5. Наносим штриховку в соответствии с двумя решениями.
Находим пересечение: x∈[-1, 1)∪(3, 5], то есть решения системы неравенств находятся в интервале при х от -1 до 1, и от 3 до 5.
Значения х= -1 и х=5 входят в число решений системы, скобка квадратная, значения х=1 и х=3 не входят в число решений, скобка круглая.
Поделитесь своими знаниями, ответьте на вопрос:
2.знайдіть значення многочлена х3-5х+6, якщо x=-2.а)8 б)-16 в)20 г)0
А)8
Объяснение:
-2³=-8
-5×-2=10
-8+10+6=8