1) Все числа равны 0, тогда их произведения равны 0 и выражение ab + bc + ca будет равно 0.
2) Числа равны произвольным действительным числам, в таком случае нужно рассмотреть равенство a + b + c = 0. Чтобы левая часть выражения была равна 0, необходимо, чтобы одно из чисел равнялось сумме двух других, поставленной с противоположным знаком. И далее если рассматривать выражение ab + bc + ca <= 0, с отрицательным знаком в любом случае будет 2 члена, в то время как третий будет со знаком плюс, и он будет меньше двух других, так как он получается из произведения Наименьших членов (они с одинаковым знаком, соответственно образуют +). Поэтому получится что ab + bc + ca будет меньше 0 в ЛЮБОМ СЛУЧАЕ.
Для примера можно взять числа 15, -7, -8 соответственно. В ab + bc + ca получится (-105) + (56) + (-120), что очевидно меньше 0.
PetrovDrozdov1785
27.02.2023
Найти неопределенные интегралы. Результаты проверить дифференцированием. а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C проверка: (x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
Объяснение:
Будет 2 случая:
1) Все числа равны 0, тогда их произведения равны 0 и выражение ab + bc + ca будет равно 0.
2) Числа равны произвольным действительным числам, в таком случае нужно рассмотреть равенство a + b + c = 0. Чтобы левая часть выражения была равна 0, необходимо, чтобы одно из чисел равнялось сумме двух других, поставленной с противоположным знаком. И далее если рассматривать выражение ab + bc + ca <= 0, с отрицательным знаком в любом случае будет 2 члена, в то время как третий будет со знаком плюс, и он будет меньше двух других, так как он получается из произведения Наименьших членов (они с одинаковым знаком, соответственно образуют +). Поэтому получится что ab + bc + ca будет меньше 0 в ЛЮБОМ СЛУЧАЕ.
Для примера можно взять числа 15, -7, -8 соответственно. В ab + bc + ca получится (-105) + (56) + (-120), что очевидно меньше 0.