x² + (8a – a²)x – a⁴ = 0
Для начала убедимся, что уравнение вообще имеет корни:
D = (8a – a²)² + 4a⁴ -- сумма квадратов не может быть отрицательной, поэтому точно есть хотя бы один корень
По теореме Виета сумма корней исходного уравнения равна –(8a – a²) = a² – 8a. Это уравнение параболы, ветви направлены вверх, корни a₁ = 0, a₂ = 8. Наименьшее значение выражения достигается в вершине параболы при a = (a₁ + a₂) / 2 = 4 и составляет a² – 8a = 4² – 8·4 = –16.
Наименьшее значение суммы корней уравнения равно –16 и достигается при a = 4.
Поделитесь своими знаниями, ответьте на вопрос:
Решите неравенство: 7^ (по модулю x) < =1-x^2 №4 вычислите:
D=b(кв)-4ac=3(кв)-4*1*(-28)=9+112=121
Так как дискриминант больше нуля, то уравнение имеет два действительных корня:
x1=(-3-(корень)121)/2*1=(-3-11)/2=-14/2=-7
x2=(-3+(корень)121)/2*1=(-3+11)/2=8/2=4
2)Найдем дискриминант квадратного уравнения
D=b(кв)-4ac=-2(кв)-4*2*(-8)=4+64=68
Так как дискриминант больше нуля, то уравнение имеет два действительных корня:
x1=(2-(корень)68)/2*2=0,5-0,5*(корень)17~=-1,56155
x2=(2+(корень)68)/2*2=0,5+0,5*(корень)17~=2,56155
3)найдем дискриминант
D=b(кв)-4ac=-5(кв)-4*1*6=25-24=1
Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня
x1=(5-(корень)1)/2*1=(5-1)/2=4/2=2
x2=(5+(корень)1)/2*1=(5+1)/2=6/2=3
ax(кв)+bx+c=a(x-x1)(x-x2)
Отсюда x(кв)-5x+6=(x-2)(x-3)
4)найдем дискриминант
D=b(кв)-4ac=-1(кв)-4*(-6)*1=1+24=25
Т.к. дискриминант больше нуля, то уравнение имеет два действительных корня
x1=(1-(корень)25)/2*(-6)=(1-5)/-12=-4/-12=1/3
x2=(1+(корень)25)/2*(-6)=(1+5)/-12=6/-12=-1/2
ax(кв)+bx+с=a(x-x1)(x-x2)
Отсюда -6x(кв)-x+1=-6(x-1/3)(x+1/2)