Vello Olga
?>

50 ! комбинаторика! сократите дробь. на фото​

Алгебра

Ответы

nadyatsoi

а = 3, в = 4, с = 5. Треугольник прямоугольный, т.к 5² =3² + 4² 

Биссектриса внутреннего угла тр-ка делит противолежащую углу сторону на части, пропорциональные прилегающим сторонам, т.е гипотенуза с поделена на отрезки: х, прилегающий к стороне а и (с-х), прилегающий к стороне b.

а:a1 = b:b1

3:х = 4:(5-x)

15 - 3x = 4x

7x = 15

a1 = x = 15/7

b1 = 5-x = 5 - 15/7 = 20/7

Сама биссектриса равна:

Lc = √(a·b - a1·b1)

Lc = √(3·4 - 15/7·  20/7)= √(12 - 300/49) = √(588/49 - 300/49) = √(288/49) =

12√2/7

ответ: 12\frac{12\sqrt{2}} {7}

 

kirill81

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

50 ! комбинаторика! сократите дробь. на фото​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

red-sun2
larinafashion829
f-d-a-14
Bolshakova Shigorina
Georgievna
nastyakrokhina87
rvvrps
yulyatmb
Ивлев1508
iv1as2
videofanovitch
Шабунина-Евгения1883
Iprokopova81
es196
StudioArtNails