ann328389
?>

Знайдіть два числа, якщо сума цих чисел дорівнює 8, а їх добуток дорівнює - 20

Алгебра

Ответы

blagorodovaanna375

Если одно х, другое (8-х), тогда х*(8-х)=-20, х²-8х-20=0, по Виета х=-2, х=10, если первое -2, то второе  8-(-2)=10, а если первое 10, то второе 8-10=-2

ответ одно  -2 другое  10

svetavalera
Такі функції мають вигляд : y=kx+m- пряма
k-кутовий коефіцієнт 
В умові задачі нам дана арифметична прогресія, усі члени якої є натуральними, двоцифровим числами , які кратні числу 4

Перший член цієї прогресії - 12 (так як число 12 є двоцифровим і ділиться на 4 без залишку)

Другий член цієї прогресії - 16 (16=4*4)

знайдемо різницю арифметичної прогресії.
16-12=4
d=4
Тепер необхідно знайти число, яке менше від 41 і ділиться на 4.
Це число 40 (40=4*10)

Найдемо суму членів ап

S_{n}= \frac{(a_{1}+a_{n})}{2}n
a_{1} - перший член
a_{n} - у даному випадку останній член (40)
a_{n{=a_{1}+d(n-1)=40
12+4(n-1)=40
28=4(n-1)
8=n
S_{8}= \frac{12+40}{2} 8=208
k=-208
Елизавета Александр2011

y = \cos( {x}^{x} )

Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.

Формула

d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.

Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.

Дифференцируем

\frac{d}{dt} ( \cos(t) ) \times \frac{d}{dx} ( {x}^{x} ) = - \sin(t) \times \frac{d}{dx} ( {x}^{x} ) = - \sin( {x}^{x} ) \times \frac{d}{dx} ( {x}^{x} )

Для упрощения производной запишем х^х как e^( ln(x^x) ).

- \sin( {x}^{x} ) \times \frac{d}{dx} (e^{ ln({x}^{x} ) } ) = - \sin( {x}^{x} ) \times \frac{d}{dx} (e^{x ln(x) } )

И опять сложная функция.

Дифференцируем её аналогично:

f(x) = e^x, g(x) = xln(x)

Заменим xln(x) перевенной k:

- \sin( {x}^{x} )( \frac{d}{dk}( {e}^{k} ) \times \frac{d}{dx} (x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{k} \times \frac{d}{dx}(x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{x ln(x)} \times \frac{d}{dx} (x ln(x) ))

За правилом производной произведения имеем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (x \times \frac{d}{dx} (x ln(x) ) + ln(x) \times \frac{d}{dx}(x))

Вычисляем все производные и получаем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (1 + ln(x) )

Это и есть ответ.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайдіть два числа, якщо сума цих чисел дорівнює 8, а їх добуток дорівнює - 20
Ваше имя (никнейм)*
Email*
Комментарий*