milanmilan8672
?>

345. Запишите алгебраическую дробь, значение которой равнонулю при х, равном:а) 3; б) –2; в) 0, 5;Можно только в дробях и понятно заранее надо​

Алгебра

Ответы

sv-opt0076
Решение верное с мелкими замечаниями.
1) sin²x≠0, Здесь должна быть проверка, а не утверждение. Нужно проверить, что  x=πn не является решением этого уравнения, и только после этого делить на sin²x.
2) для уравнения ctgx =-1 решением должен быть угол из интервала
[0; π], поэтому решением будет x=3π/4+πk
3)  x=3π/4+πk; x=arcctg1/3+πk - это независимые корни, поэтому нельзя использовать одно целое число k на двоих.
x=3π/4+πk; x=arcctg1/3+πm   ,  k,m ∈ Z

Вторая часть задания.
Укажите корни этого уравнения, принадлежащие отрезку
[-9π/2 ; -3π] ⇔ [-4,5π ; -3π]
В полученные корни 
x=3π/4+πk; x=arcctg1/3+πm   ,  k,m ∈ Z
нужно последовательно подставлять значения целых чисел, и полученные х проверять на попадание в интервал
1) x=3π/4+πk= 0,75π + πk
k=-6  ⇒   x=0,75π - 6π = -5,25π  < -4,5π   ⇒  x∉[-4,5π ; -3π]
k=-5  ⇒   x=0,75π - 5π = -4,25π ⇒   -4,5π<-4,25π<-3π
                                         корень подходит
k=-4  ⇒   x=0,75π - 4π = -3,25π ⇒   -4,5π<-3,25π<-3π
                                         корень подходит
k=-3  ⇒   x=0,75π - 3π = -2,25π  > -3π   ⇒  x∉[-4,5π ; -3π]

2) x=arcctg1/3+πm
Сначала нужно понять, как выглядит  угол  α=arcctg1/3
ctgα = cosα/sinα = 1/3
(0; π/4)  ⇒  cos α>sin α  ⇒  cosα/sinα > 1 ⇒ угол arcctg1/3 
не в этом интервале
(π/4; π/2)  ⇒ cosα<sinα   ⇒  0 < cosα/sinα < 1
Следовательно
π/4 < arcctg 1/3 < π/2  ⇔    0,25π < arcctg 1/3 < 0,5π

m=-5; ⇒ x=arcctg1/3-5π       0,25π < arcctg 1/3 < 0,5π
                                        0,25π-5π < arcctg 1/3-5π < 0,5π-5π
                                             -4,75π < arcctg 1/3-5π < -4,5π
                                                x < -4,5π ⇒  x∉[-4,5π; -3π]
m=-4; ⇒ x=arcctg1/3-4π       0,25π < arcctg 1/3 < 0,5π
                                        0,25π-4π < arcctg 1/3-4π < 0,5π-4π
                                             -3,75π < arcctg 1/3-4π < -3,5π
                                                корень подходит
m=-3; ⇒ x=arcctg1/3-3π       0,25π < arcctg 1/3 < 0,5π
                                        0,25π-3π < arcctg 1/3-3π < 0,5π-3π
                                             -2,75π < arcctg 1/3-3π < -2,5π
                                                x > -3π ⇒  x∉[-4,5π; -3π]

Итак, отрезку принадлежат следующие корни:
x₁= -4,25π;  x₂= -3,25π;  x₃=arcctg1/3-4π
bureiko
1) ∫x²dx = x³/3 | в пределах от 2 до 3 = 3³/3 - 2³/3 =27/3 - 8/3 = 19/3
2) сначала надо найти пределы интегрирования. Для этого решим: 
4 - х² = 2 + х
х² + х -2 = 0 
По т. Виета х1 = -2 и х2 = 1. На чертеже парабола ветвями вниз и прямая, проходящая через общие с параболой точки  (- 2; 0) и (1;3)
Фигура состоит из треугольника, образованного прямой у = 2 +х  и криволинейного треугольника Образованного параболой и осью х
S фиг = S Δ + ∫ (4-x²) dx в пределах от 1 до 2 = 
= 1/2*3*3  + (4х - х³/3) в пределах от 1 до 2=
= 4,5 + (4*2 -2³/3 - 4*1 + 1/3) = 4,5 +12 - 7/3 = 16,5 -2 1/3= 14 1/6

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

345. Запишите алгебраическую дробь, значение которой равнонулю при х, равном:а) 3; б) –2; в) 0, 5;Можно только в дробях и понятно заранее надо​
Ваше имя (никнейм)*
Email*
Комментарий*