sn009
?>

Найди значение выражения: (6a−8b)⋅(6a+8b)−36a2, если a=2 и b=0, 1

Алгебра

Ответы

muraveiynik

-0,64

Объяснение:

Упрощаем выражение:

(6a−8b)⋅(6a+8b)−36a²=36a²-64b²-36a²=-64b²

Подставляем: b=0,1

-64*(0,1)²=-64*0,01=-0,64

ikuvila5484

(6a-8b)(6a+8b)-36a2=-0,64

pronikov90

Объяснение:

Конечно же обе формулы дают ОДНИ И ТЕ ЖЕ решения. Просто запись в частном случае более лёгкая для восприятия.

sinx=1\; \; \Rightarrow \; \; x=\frac{\pi}{2}+2\pi k\; ,\; k\in Z

Из этой формулы следует, что sinx=1  при х=П/2 , причём, если эту точку повернуть на один круг (+/-2П), два круга (+/-4П), три круга (+/-6П)  и так далее, то придём в одну ту же точку В на тригонометрическом круге с декартовыми координатами (0,1) . Смотри рисунок. Поворачивать точку можно против часовой стрелки ( n=+1,2,3,... ) или по часовой стрелкe (n=-1,-2,-3,... ) .

В случае общей формулы надо рассматривать чётные и нечётные значения  n .

Если k- чётно, то получаем

k=2n\, :\; \; x=(-1)^{2n}\cdot arcsin1+\pi \cdot 2n=+1\cdot \frac{\pi}2}+2\pi n,\; n\in Z

То есть получили ту же формулу, что и в частном случае.

Если k - нечётно, то получаем

k=2n-1\, :\; \; x=(-1)^{2n-1}\cdot arcsin1+\pi \cdot (2n-1)=-1\cdot \frac{\pi}{2}+\pi \cdot (2n-1)=\\\\=-\frac{\pi}{2}+2\pi n-\pi =-\frac{3\pi }{2}+2\pi n \; ,\; n\in Z

На вид эта формула не похожа на частный случай, но точка х= -3П/2  получается из точки с дек. координатами А(1,0) путём её поворота на 270° (3П/2) по часовой стрелке (отрицательное направление поворота, поэтому знак (-) пишем ). И попадёт она в точку В(0,1). Но ведь мы попадём в точку В(0,1)  и при повороте точки А(1,0) против часовой стрелки ( положительное направление поворота) на 90° (П/2) .

Поэтому запись  x=-\frac{3\pi}{2}+2\pi n\; ,\; n\in Z  равноценна записи  x=\frac{\pi}{2}+2\pi n\; ,\; n\in Z .

Конечно, предпочтительнее сразу писать частный вид формулы для решения уравнения  sinx=1, потому что он более простой в записи , но описывает те же решения, что и частный случай.

Ye.Vadim
1. (4*x-7)^2 = Ι (4*x-7) Ι
заметим, что 
I t I² =t²,  ⇒  (4*x-7)^2= Ι (4*x-7) Ι²  ⇒ пусть  Ι (4*x-7) Ι=y ⇔

 y²=y ⇔y(y-1)=0      ⇔        1) y=0        2)  y-1=0   ⇒ y=1  ⇒  Ι (4*x-7) Ι=1

      1) y=0  ⇒   Ι (4*x-7) Ι=0    ⇒4*x-7=0  ⇒x=7/4
проверка x=7/4
(4*x-7)^2 = Ι (4*x-7) Ι      (4*(7/4)-7)^2 = Ι (4*(7/4)-7) Ι      0=0 верно

2) Ι (4*x-7) Ι=1     ⇔  
     2.1)  4*x-7=1  ⇔ x=2    

проверка x=2    (4*2-7)^2 = Ι (4*2-7) Ι    1=1 верно 
       
   2.2)  4*x-7=-1  ⇔ x=6/4   x=3/2 
проверка x=3/2    (4*(3/2)-7)^2 = Ι (4*(3/2)-7) Ι    1=1 верно 

ответ: x=7/4,   x=2,    x=3/2 .

2.
Ι (3x^2-3x-5) Ι=10  ⇔
1) (3x^2-3x-5) =10         2) (3x^2-3x-5) =-10

1)  (3x^2-3x-15) =0   D=9+4·3·15=9(1+20)>0

x1=(3-3√21)/6 =(1-√21)/2     x2=(1+√21)/2

 2) (3x^2-3x+5) =0    D=9-4·3·5=<0 нет решений

  ответ:
x1=(1-√21)/2     x2=(1+√21)/2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найди значение выражения: (6a−8b)⋅(6a+8b)−36a2, если a=2 и b=0, 1
Ваше имя (никнейм)*
Email*
Комментарий*