0
Объяснение:
Находим точку, симметричную точке (2;-3) относительно оси ординат. Для этого надо поменять знак у абсциссы. Получаем точку (-2;-3)
Находим общее уравнение прямой, параллельной y = 1,5x -2,5.
у = 1,5х -2,5 => k=1,5 => y = 1,5x +b
Находим b. Для этого в уравнение y = 1,5x +b подставляем координаты точки принадлежащей данной прямой, т.е. точки (-2;-3)
1,5*(-2)+b = -3
-3+b = -3
b = -3+3
b = 0
Итак, y =1,5x - уравнение параллельной прямой у=1,5х-2,5 и проходящей через точку, симметричную точке (2;-3) относительно оси ординат.
Теперь находим абсциссу точки пересечения найденной прямой с осью абсцисс.
у = 0 - уравнение оси абсцисс
1,5 х = 0
х = 0:1,5
х = 0
(0;0) - точка пересечения прямой у=1,5х с осью Ох
х = 0 - искомая абсцисса
Поделитесь своими знаниями, ответьте на вопрос:
Преобразуйте в произведение выражений: а) sin 20° + sin 40°б) sin 55° - sin(-65°)в) cos 12° + sin 42°
суммы кубов: а³ + b³ = (a+b)(a²-ab+b²)
и
разности кубов: a³ - b³ = (a-b)(a²+ab+b²)
а)
(2с + 1)³ - 64 = (2c+1)³ - 4³ =
= (2c+1-4)·((2c+1)²+(2c+1)·4+4²) =
= (2c-3)(4c²+4c+1+8c+4+16) =
= (2c-3)·(4c²+12c+21)
б)
p³ + (3p - 4)³ =
= (p + (3p-4))·(p²- p·(3p-4)+(3p-4)²) =
= (4p-4)·(p²-3p²+4p+9p²-24p+16) =
= 4·(p-1)·(7p²-20p+16)
в)
8 - (3 - k)³ = 2³ - (3-k)³ =
= (2- (3-k))·(2²+2·(3-k)+(3-k)²) =
= (-1+k)·(4+6-2k+9-6k+k²) =
= (k-1)·(k²-8k+19)
г)
(5a + 4)³ - a³ =
= (5a+4-a)·((5a+4)²+(5a+4)·a+a²) =
= (4a+4)(25a²+40a+16+5a²+4a+a²) =
= 4·(a+1)·(31a²+44a+16)