chernova1exei862
?>

Сколько можно составить различных шестизначных чисел из цифр 0, 3, 6?

Алгебра

Ответы

betepah

486

Объяснение:

Это комбинаторика

посчитаем кол-во возможных цифр на позиции от 1 до 6

(если число = 123, то 1 - 1-ая позиция; 2 - 2-ая )

на 1 можно поставить 3 или 6 (т.е. 2 числа)

на все остальные 0 или 3 или 6(т.е. 3 числа)

=> ответ 2 * 3 * 3 * 3 * 3 * 3 = 2 * 3 ^ 5 = 486

I.B.Petrishchev
4x³+1/x³+2=((2x³)²+2x³+1)/x³. Если обозначить t=2x³, то количество подобных слагаемых в исходном выражении равно количеству слагаемых в многочлене 4032 степени (t²+t+1)²⁰¹⁶. Рассмотрим процесс раскрытия скобок в этом произведении. Возьмем произвольное слагаемое t^k, где k≤4032. Покажем, что коэффициент при нем не 0. Если k=2m, то m≤2016, и значит это слагаемое можно получить, перемножая t² из m скобок (t²+t+1), а из остальных скобок взяв 1. Если k=2m+1, то m≤2015 и значит t^k можно получить, взяв t² из m скобок, взяв t из одной скобки, а из остальных скобок взяв 1. Т.к. все получающиеся коэффициенты положительны, то при каждом слагаемом t^k будет ненулевой коэффициент, а значит общее количество слагаемых равно степени многочлена плюс 1, т.е. ответ 4033.
Dubovitskayae
1)2x+(3+4x)=2х+3+4х=6х+3
2) 2х-(3+4х)=2х-3-4х=-3-2х
3)2х-(3-4х)=2х-3+4х=6х-3
4)3m+(1+2m)=5m+1
5)3m-(1+2m)=m-1
6)3m-(1-2m)=5m-1
Раскрыть скобки:
1)2x+(1+2y)=2x+2y+1
2)a+(3-3b)=a+3-3b
3)2x-(1+2y)=2x-1-2y
4)a-(3-3b)=a-3+3b
5)b+(c-a+2d)=b+c-a+2d
Применяя законы и свойства арифметических действий, упростить выражение: 
1)3a+3(1+a)=6a+3
2)2(m-1)+2m=4m-2
3)5(m+3n)+2(2m-n)=5m+15n+4m-2n=9m+13n
4)3(x+2y)+4(2x-y)=3x+6y+8x-4y=11x+2y
5)7(2x+3y)-(3x+2y)=14x+21y-3x-2y=11x+19y
6)5(6c+3d)-2(3c+6d)=30c+15d-6c-12d=24c+3d
7)2(5c+4d)-2(4c+5d)=10c+8d-8c-10d=2c-2d
Упростить и найти числовое значение выражения:
1) 4-5.1х-9=-5.1х-5, если х=10, то -51-5=-56
2)5-0.21х-28=-0.21х-23, если х=100, то -21-23=-44
3)2а+0.6а-0.75=2.6а-0.75, если а=5, то 13-0.75=12.25
3)6а+0.3а-0.6=6.3а-0.6, если а=30, то 189-0.6=188.4

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сколько можно составить различных шестизначных чисел из цифр 0, 3, 6?
Ваше имя (никнейм)*
Email*
Комментарий*