ответ: 4.
Объяснение:
Одночлен со старшей степенью числителя будет иметь вид 2⁵⁰*x⁵⁰, одночлен со старшей степенью знаменателя - 2⁴⁸*x⁵⁰. Разделив числитель и знаменатель на x⁵⁰, получим в числителе выражение вида 2⁵⁰+a1/x+a2/x²+...ak/x⁵⁰, где a1, a2,..., ak - числовые коэффициенты, а в знаменателе - выражение вида 2⁴⁸+b1/x+b2/x²+...bk/x⁵⁰, где b1, b2,..., bk - также числовые коэффициенты. Так как при x⇒∞ все выражения, кроме 2⁵⁰ в числителе и 2⁴⁸ в знаменателе, стремятся к 0, то предел данной дроби равен 2⁵⁰/2⁴⁸=2²=4.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите b, если прямая y=-2x-1 касается параболы у=x²+bx+c в точке А(-2;3)
Разложим числа на простые множители.
14426552885311262343616170562352821764288224413147349777
Т.е. мы получили, что:
144265 = 5•11•43•61
7056 = 2•2•2•2•3•3•7•7
Находим общие множители (общих множителей нет, т.е. числа 144265 и 7056 взаимно-простые).
НОД(144265, 7056) = 1
Чтобы найти НОК объединяем множители и перемножаем их:
НОК(144265, 7056) = 2•2•2•2•3•3•5•7•7•11•43•61 = 1017933840
Или можно воспользоваться формулой:
НОК(a, b) = (a•b)/НОД(a, b)
НОК(144265, 7056) = (144265•7056)/НОД(144265, 7056) = 1017933840ответ:
НОД(144265, 7056) = 1
НОК(144265, 7056) = 1017933840