Апраксин Владимир897
?>

Знайдіть область визначення функції: y=​

Алгебра

Ответы

ekkim310

D(f) = (-∞; +∞)

Объяснение:

Задана функція має вигляд полінома. y=ax^{n} +bx^{n-1}+C.

Для такої функції областю визначення буде вся дійсна множина.

D(f) = (-∞; +∞)

Іншими словами, функцію можна обчислити для будь-якого значення х.

deshkina82

x = r cos(a), y = r sin(a), dx dy = r dr da, r > 0, -π < a < π

1. 0 < x < 2, 0 < y < √(4 - x^2)

r cos(a) > 0 - выполняется при cos(a) > 0: -π/2 < a < π/2

r sin(a) > 0 - выполняется при sin(a) > 0 : 0 < a < π

0 < r sin(a) < √(4 - x^2)

0 < r^2 sin^2(a) < 4 - r^2 cos^2(a)

0 < r^2 < 4 : r < 2 - необходимо и достаточно

0 < r cos(a) < 2 - достаточное условие: r < 2 (уже выполнено)

т.е. область интегрирования: 0 < a < π/2, 0 < r < 2

\int\limits^{\pi/2}_{0} \int\limits^2_0 \sqrt{4 - r^2}r dr da = -\frac{\pi}{6} (4 - r^2)^{3/2} |_0^2 = \frac{4}{3}\pi


2. Область интегрирования такая же,

\int\limits^{\pi/2}_{0} \int\limits^2_0 \sqrt{r^2 cos^2a + r^2 sin^2a}r dr da = \int\limits^{\pi/2}_{0} \int\limits^2_0 r^2 dr da = \frac{\pi}{6} r^3 |_0^2 = \frac{4}{3}\pi

nord0764

Для того, чтобы представить выражение (y + 4)(y^2 - 3y + 5) в виде многочлена стандартного вида (в данном многочлене не должно быть подобных одночленов, а каждый одночлен должен быть приведен к стандартному виду.


Откроем скобки, применим правило умножения скобки на скобку.


(y + 4)(y^2 - 3y + 5) = y * y^2 - y * 3y + y * 5 + 4 * y^2 - 4 * 3y + 4 * 5 = y^3 - 3y^2 + 5y + 4y^2 - 12y + 20;


Приведем подобные одночлены:


y^3 - 3y^2 + 5y + 4y^2 - 12y + 20 = y^3 - 3y^2 + 4y^2 + 5y - 12y + 20 = y^3 + y^2 - 7y + 20.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайдіть область визначення функції: y=​
Ваше имя (никнейм)*
Email*
Комментарий*