lirene
?>

Знайдіть суму перших 3 членів геометричної прогресії (bn), якщо 1+q+q^2=30/b1​

Алгебра

Ответы

Petrakova Ilyushin
Может быть так? 

Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?

Пусть Х-производительность 1-го, У-производительность 2-го.
Система:

х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5

korj8

По условию a^2 + 2cd + b^2 = k^2 и c^2 + 2ab + d^2 = m^2, где k и m - натуральные. Тогда 2cd = k^2 - a^2 - b^2 и 2ab = m^2 - c^2 - d^2. Составим квадраты сумм a + b и c + d: (a + b)^2 = a^2 + b^2 + 2ab = a^2 + b^2 + m^2 - c^2 - d^2 и (c + d)^2 = c^2 + d^2 + 2cd = c^2 + d^2 + k^2 - a^2 - b^2. Теперь составим их сумму: (a + b)^2 + (c + d)^2 = a^2 + b^2 + m^2 - c^2 - d^2 + c^2 + d^2 + k^2 - a^2 - b^2 = m^2 + k^2 => (a - b)^2 = k^2, (c - d)^2 = m^2. Тогда a^2 + 2cd + b^2 = (a + b)^2 = a^2 + 2ab + b^2 => 2ab = 2cd => ab = cd. Полученное условие должно соблюдаться и нам подойдут, к примеру, числа ab = cd = 6 => 1*6 = 2*3 => a=1, b=6, c=2, d=3. Действительно, a^2 + 2cd + b^2 = 1^2 + 2*2*3 + 6^2 = 1 + 12 + 36 = 49 = 7^2 и c^2 + 2ab + d^2 = 2^2 + 2*1*6 + 3^2 = 4 + 12 + 9 = 25 = 5^2.

ответ: a =1, b = 6; c = 2, d = 3.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Знайдіть суму перших 3 членів геометричної прогресії (bn), якщо 1+q+q^2=30/b1​
Ваше имя (никнейм)*
Email*
Комментарий*