ibird777
?>

Найти первый член арифметической прогрессии, если двенадцатый член равен 17, разность 2​

Алгебра

Ответы

alexeylipatov

-5

Объяснение:

a_{12}=a_1+11d\\=a_1=a_{12}-11d\\a_1=17-22=-5

khadisovam9

Пусть f(x)=ax^2+bx+c. Данные уравнения могут быть записаны в виде

ax^2+(b-5)x+(c+20)=0;\ ax^2+(b-2)x+(c+8)=0.

По условию эти уравнения имеют единственные корни, что бывает тогда и только тогда, когда их дискриминанты равны нулю, то есть

(b-5)^2-4ac-80a=0;\ (b-2)^2-4ac-32a=0.

Домножим первое выражение на 2, а второе на 5, после чего возьмем их разность:

2(b-5)^2-8ac-5(b-2)^2+20ac=0;\ 12ac=3b^2-30;\ 4ac=b^2-10,

откуда дискриминант исходного квадратного трехчлена равен

b^2-4ac=b^2-b^2+10=10.

Таким образом, дискриминант равен 10, а значит наибольшее значение, которое он может принимать, также равен 10

Shipoopi8
Cos(5*x) = 0 5*x = acos(0) + pi*n, или 5*x = pi/2 + pi*n, где n - любое целое число разделим обе части полученного ур-ния на 5  получим ответ: x = (pi/2 + pi*n)/5 sin4x=0 4*x = asin(0) + 2*pi*n, или 4*x = 2*pi*n разделим обе части полученного ур-ния на 4  получим ответ: x = pi*n/2 sinx/2=0 x/2 = asin(0) + 2*pi*n, или x/2 = 2*pi*n разделим обе части полученного ур-ния на 1/2 получим ответ: x = 4*pi*n cosx/3=0 x/3 = acos(0) + pi*n, или x/3 = pi/2 + pi*n разделим обе части полученного ур-ния на 1/3 получим ответ: x = 3*(pi/2 + pi*n) sin(3x+п/4)=0 3*x + pi/4 = asin(0) + 2*pi*n, или 3*x + pi/4 = 2*pi*n перенесём pi/4  в правую часть ур-ния с противоположным знаком,  итого: 3*x = -pi/4 + 2*pi*n разделим обе части полученного ур-ния на 3 получим ответ: x = (-pi/4 + 2*pi*n)/3 cos(8x+п/3)=0 8*x + pi/3 = acos(0) + pi*n, или 8*x + pi/3 = pi/2 + pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: 8*x = pi/6 + pi*n разделим обе части полученного ур-ния на  8  получим ответ: x = (pi/6 + pi*n)/8 sin(x/7+п/3)=0 x/7 + pi/3 =  asin(0) + 2*pi*n, или x/7 + pi/3 = 2*pi*n перенесём pi/3 в правую часть ур-ния с противоположным знаком, итого: x/7 = -pi/3 + 2*pi*n разделим обе части полученного ур-ния на  1/7  получим ответ: x = 7*(-pi/3 + 2*pi*n) cos(x/3+п/6)=0 x/3 + pi/6 = acos(0) + pi*n, или x/3 + pi/6 = pi/2 + pi*n, где n - любое целое число перенесём pi/6 в правую часть ур-ния с противоположным знаком, итого: x/3 = pi/3 + pi*n разделим обе части полученного ур-ния на  1/3  получим ответ: x = 3*(pi/3 + pi*n)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти первый член арифметической прогрессии, если двенадцатый член равен 17, разность 2​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Butsan-Bagramyan
Kondratchik Vladimir
Leon-12
izumrud153
maxborod
aci2003
ilma20168
Konstantin_Vadimirovich
filternovo
zabrodin
Евгеньевич Балиловна1398
motor2218
sssashago8
Avolohova
kulturarai44