Предположим, что искомое число состоит из трех и более цифр, тогда мы получим следующее выражение (для трехзначного числа): Это равенство не выполняется ни при каких значениях a, b, c. Однозначным искомое число не может быть, поскольку после отбрасывания цифры ничего не останется. Остается вариант - искомое число состоит из двух цифр. Получаем следующее выражение: Нас устраивают таких однозначные значения a, при которых получаются однозначные значения b: Таким образом, получаем всего два числа: 14 и 28. ответ: 2
miyulcha8077
05.08.2022
1)корень(5х+9) =2х.Надо возвести в квадрат обе части уравнения. 5х + 9 = 4х². Получаем квадратное уравнение. 4х² - 5х - 9 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-5)^2-4*4*(-9)=25-4*4*(-9)=25-16*(-9)=25-(-16*9)=25-(-144)=25+144=169; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√169-(-5))/(2*4)=(13-(-5))/(2*4)=(13+5)/(2*4)=18/(2*4)=18/8=2.25; x_2=(-√169-(-5))/(2*4)=(-13-(-5))/(2*4)=(-13+5)/(2*4)=-8/(2*4)=-8/8=-1. Второй (отрицательный) корень отбрасываем - в задании даётся положительное значение корня. ответ: х = 18/8 = 9/4 = 2,25.
2)(1/7)степень7-x =49. Выражение (1/7)^(7-x) равносильно 7^(x-7) по свойству (1/а) = а^(-1). Тогда 7^(x-7) = 7². Отсюда х - 7 = 2 х = 2 + 7 = 9. ответ: х = 9.
3)lоg внизу5 ×(7-x)=2 Логарифм - это показатель степени основания. То есть 5² = 7 - х Отсюда х = 7 - 25 = -18. ответ: х = -18.
−14⋅|x|+7,75=−1.
-14|x|=-1-7,75
-14|x|=-8,75
|x|=0.625
х1=-0.625
х2=0.625