Для исследования функции сначала нужно взять производную. Чтобы проще было взять воспользуемся формулой сложения степеней:
Получим что:
Теперь перепишем функцию:
И берем производную:
Дальше найдем точку где производная обращается в 0.
Для этого решаем уравнение:
Это будет точка экстремума. Но точка экстремума может быть как минимумом так и максимумом. Надо показать что это максимум. Как это делается. Есть 2 метода.
1 метод:
Рассмотрим как ведет себя производная при x<9 и при x>9. Очевидно, что при x>9 производная . Значит функция растет. При x>9, наоборот . Для любых положительных х, вторая производная будет меньше нуля, т.е y''<0. Это необходимое и достаточное условие, чтобы функция была выпуклой вверх. Т.к. функция выпулкая вверх, то точка экстремума будет точкой максимума. ч.т.д
ответ: точка максимума x=9, значение функции в этой точке y(9)=10
Поделитесь своими знаниями, ответьте на вопрос:
Знайти номер члена арифметичної прогресії (ар), якийдорівнює 17, 2 , якщо a = 5, 3 , d = 0, 7.
x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный).
x - 1 < 4*V(x + 4)
Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1,
с учетом ОДЗ получаем -4 <= х < 1.
Пусть x >= 1.
Возведем обе части неравенства в квадрат
(x - 1)^2 < 16*(x + 4)
x^2 - 2*x + 1 < 16*x + 64
x^2 - 18*x - 63 < 0
Равенство верно на интервале между корнями уравнения.
Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21.
Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем
ответ: -4 <= х < 21.