alexandergulyamov
?>

Найти сумму пяти первых членов геометрической прогрессии, если

Алгебра

Ответы

asparinapti39
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

(
a
+
b
)
n
=

k
=
0
n
(
n
k
)
a
n

k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n

1
b
+

+
(
n
k
)
a
n

k
b
k
+

+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n

k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
patersimon1
(5х-3)²+(12х+5)²≤(7-13х)²+34х²+17х+410
  25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410
 169х²+90х+34≤ 203х²-165х+459
 169х²-203х²+90х+165х+34-459 ≤ 0
   -34х²+255х-425≤0  ( : -17)
    2х²-15х+25≥0
     D=225-200=25=(5)²
    x1=(15+5)/4=5
    х2=5/2=2,5
2(х-5)(х-2,5)≥0   (:2)
   (х-5)(х-2,5)≥0
                                     2,55 х
                                               +                    -               +
   нас интересуют только те точки ,где функция принимает положительное значение  - это промежутки от -∞ до 2,5   и  от  5 до +∞
точки 2,5 и 5 тоже входят , так как неравенство не строгое
   тогда запишем : х∈(-∞;2,5]U[5;+∞)
   

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти сумму пяти первых членов геометрической прогрессии, если
Ваше имя (никнейм)*
Email*
Комментарий*