Решение сводится к нахождению вершины параболы (см.ниже).
Для начала, из уравнения
x+2y=6
выразим игрек:
y=3-0,5x
И подставим это выражение в произведение xy.
Получим такую функцию:
f(x) = xy = x(3-0,5x) = -0,5x²+3x
Эта функция показывает, как меняется значение произведения xy при изменении переменной икс (и, соответствующего ему изменения игрек, ведь они связаны указанным в задаче уравнением).
График этой функции- это парабола, ветви которой уходят вниз. А верхняя точка (максимум)- это вершина параболы.
Координату икс вершины можно вычислить как среднее арифметическое между иксами в нулях функции.
Нули функции (точки, в которых функция равна нулю) будут при:
x₁=0 и 3-0,5x = 0, то есть при x₂=6
Среднее равно x₀=(0+6)/2=3
При этом, функция будет равна:
f(3) = -0,5*3²+3*3 = 4,5
Это и есть наше искомое максимальное значение произведения xy.
ответ: 4,5
Поделитесь своими знаниями, ответьте на вопрос:
Персед5. Натуральное число при делении на 11 даёт в остатке 4. Докажите, что его квадрат при де-лении на 11 даёт в остатке 5.Доказательство;
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
О т в е т :