2) Дайте определение функции, возрастающeй в промежутке; убывающей в промежутке. 3) Приведите примеры возрастающей и убывающей линейной функции? Сформулируйте и докажите соответствующее свойство линейной функции. 4) Как изменяется в каждом из промежутков (-∞; 0) и (0; +∞) функция y=k/x? Рассмотрите случаи k < 0 и k > 0.
1)графиком линейной функции и функции прямой пропорциональности является прямая. графиком функции обратной пропорциональности является гипербола. 2) Функция возрастает на промежутке если из того, что х1>x2 следует f(x1)>f(x2), где х1 и х2 из области определения и принадлежат рассматриваемому промежутку.
Функция убывает на промежутке если из того, что х1>x2 следует f(x1)<f(x2), где х1 и х2 из области определения и принадлежат рассматриваемому промежутку.
3) если k(коэффицент) положительный, функция возрастает, если отрицательный - убывает. Например у=х возрастает, у=-х убывает.
4) если k<0, то функция возрастает если k>0, функция убывает.
sde19755511
08.08.2020
Х + 7у = - 6 → х = -6 - 7у 2х - 5у = 7 → 2(- 6 - 7у) - 5у= 7 → - 12 - 14у - 5у = 7 → - 19у = 19 → у = - 1 х + 7у = - 6 → х + 7*(-1) = - 6 → х = 7 - 6 → х = 1 х = 1 ; у = - 1
-234+1,4y
Объяснение:
(3×6-0,7y×2)×(3×6+0,7y×2)
18-1,4y×18+1,4y
18-252+1,4y
-234+1,4y