1.
– 6x – 23 = – 9x – 5
– 6x + 9x = – 5 + 23
3x = 18
x = 6
2.
8x – 6 = 5x + 3
8x – 5x = 3 + 6
3x = 9
x = 3
3.
6x + 7 = 20x – 5 – 16
6x – 20x = – 16 – 5 – 7
-14x = -28
x = 2
4.
15x – 12x – 20 = 14x + 35
15x – 12x – 14x = 35 + 20
-11x = 55
x = -5
5.
15x – 40 – 6 + 15x = 4x – 20
15x + 15x – 4x = – 20 + 6 + 40
26x = 26
x = 1
6.
2(x-23)+3(15-x)=-x+1
2x – 46 + 45 – 3x = – x + 1
2x – 3x + x = 1 – 45 + 46
0x = 2
Какой бы x мы ни взяли, это уравнение не превратится в верное равенство. Значит, это уравнение решений не имеет!
Т.к. многочлен x³+ax²+bx+c делится нацело и на двучлен х-1 и на двучлен х+2, то он делится нацело и на произведение
(x-1)(x+2)=x²+x-2.
Т.к. степень многочлена x³+ax²+bx+c равна 3, а степень трехчлена x²+x-2 равна 2, то частное от их деления есть двучлен вида х-k.
Т.е. (x²+x-2)(x-k) = x³+ax²+bx+c. Раскроем скобки в левой части:
x³+x²-2x-kx²-kx+2k = x³+ax²+bx+c
x³+(1-k)x²+(-2-k)x+2k = x³+ax²+bx+c
Используя метод неопределенных коэффициентов, получим соотношения для a, b и с:
a = 1-k, b = -2-k, с = 2k.
Т.к. при делении x³+ax²+bx+c на х+1 в остатке получается 10, то по свойству делимости многочленов значение многочлена x³+ax²+bx+c при х = -1 должно быть равно 10, т.е. (-1)³+a(-1)²+b(-1)+c = 10, отсюда a-b+c=11.
Решим систему уравнений:
ответ: а = -3, b = -6, с = 8.
Поделитесь своими знаниями, ответьте на вопрос:
У коробці було 23 картки, пронумерованих від 1 до 23. Із коробки навмання взяли одну картку. Яка ймовірність того, що на ній записано число: 1) 24; 2) кратне 5; 3) складене; 4) у записі якого є цифра 2; 5) сума цифр якого ділиться націло на 3
1)0
2)4/23
3)13/23
4)6/23
5)4/23
Объяснение: