ответ: чтобы доказать тождество нужно доказать, что его правая и левая части равны, т.е. свести его к виду «выражение» = «такое же выражение».
Объяснение:
(x-y)³ = -(y-x)³
(x-y)×(x-y)×(x-y) = -1×(y-x)×(-1)×(y-x)×(-1)×(y-x)
(x-y)×(x-y)×(x-y) = (x-y)×(x-y)×(x-y)
(x²-xy-xy+y²)×(x-y) = (x²-xy-xy+y²)×(x-y)
(x²-2xy+y²)×(x-y) = (x²-xy-xy+y²)×(x-y)
x³-2x²y+xy²-x²y+2xy²-y³ = x³-2x²y+xy²-x²y+2xy²-y³
x³-3x²y+3xy²-y³ = x³-3x²y+3xy²-y³
ну, или можно было сразу воспользоваться формулой сокращённого умножения (прикреплю картинку)
тогда было бы намноооого легче:
(x-y)³ = -(y-x)³
-(y-x)³ = (x-y)³, потому что когда мы умножаем выражение на -1, то знаки меняются на противоположный:
-(y-x)³ = (-1)×(y-x)³=(y×(-1) - x×(-1))³ = (-y+x)³ = (x-y)³
(x-y)³ = (x-y)³
x³-3x²y+3xy²-y³ = x³-3x²y+3xy²-y³
Поделитесь своими знаниями, ответьте на вопрос:
Найди координаты вершины параболы y=−2, 5x2−4x.
вершины нет, это прямая
Объяснение:
я умножу 2,5 на 2
y=−2,5x2−4x=−5−4x
вершины нет, это прямая