elenalusia
?>

Реши систему уравнений: (все в фигурной скобке) xy=8 x+у=6 Запиши ответ в порядке возрастания х х1-? у1-? х2-? у2-?

Алгебра

Ответы

Матвеев

Раздел долго плана: Школа: Каскабулакская средняя школа

5.3C Множества ФИО учителя: Рашидов Махмуд Исмаилович

Дата: 28.07.2017г.

Класс: 5 Количество присутствующих:15 отсутствующих:

Тема урока

Объединение и пересечение множеств

Цели обучения, которые достигаются на данном уроке (ссылка на учебную программу)

5.4.1.2 знать определения объединения и пересечения множеств;

5.4.1.3 находить объединение и пересечение заданных множеств, записывать результаты, используя символы , ;

Цели урока

Дать определения объединения и пересечения множеств формированию навыков находить объединения и пересечение заданных множеств и записывают результаты используя символы , ;

Критерии успеха

Учащийся достиг цели обучения, если:

1. знает определения объединения и пересечения множеств

2. находит объединение и пересечение заданных множеств. 3.записывает результаты, используя символы , ;

Языковые цели

В ходе урока учащиеся будут оперировать новыми терминами и понятиями, комментировать порядок выполнения действий с множествами

Предметная лексика и терминология:

множества, пересечение и объединение; подмножества, пересекающиеся и непересекающиеся множества, пустое множество, элементы множества.

Точность и ясность словесного выражения мыслей.

Привитие ценностей

Воспитание чувства патриотизма. Формирование и поддержание доверительных межличностных отношений, взаимного уважения, взаимной ответственности. Воспитание цельной и порядочной личности, формирование у учащихся коммуникативных навыков и навыков лидера 21го века.

Межпредметные связи

Знания, полученные в данном разделе, найдут применение в алгебре, геометрии, биологии, истории.

Навыки использования ИКТ

Интерактивная доска, презентация ,интернет, мобильные устройства.

Предварительные

знания

Знает понятия множества и его элементов, пустого множества;

Определяет характер отношений между множествами (пересекающиеся и непересекающиеся множества);

Знаком с понятием подмножества;

Умеет использовать символы , , , , ,  при работе с множествами;

Ход урока

Запланированные этапы урока

Запланированная деятельность на уроке

Ресурсы

Начало урока

Оргмомент

Позитивный психологический настрой на урок

(3 мин)

Деление на группы с приема «Множества»

(5-мин)

Целеполагание

Постановка цели урока и определение критериев успеха и оценивания.

(5 мин)

Групповая работа

(3 мин)

Середина урока.

Презентация новой темы

(5мин)

Приветствует учеников, проверяет готовность к уроку, желает успеха.

Метод «Дерево достижений»

Педагог. Обратите внимание на наше одинокое дерево. У каждого из вас есть листочки разного цвета. Я по вас взять один из них (любого цвета) и нашему дереву покрыться разноцветной листвой.

Тех, кто выбрал зеленый лист, ожидает успех на сегодняшнем занятии.

Те, кто выбрал

Красный, — желают общаться.

Желтый — проявят активность.

Синий — будут настойчивы.

Помните, что красота дерева зависит от вас, ваших стремлений и ожиданий.

Деление на группы прием «Множества»

Ученики делятся на группы, выбирая разных животных – птицы, млекопитающие, насекомые.

Используя прием деления на группы, учитель наводит на тему урока, задавая наводящие во тем самым актуализирует знания учащихся о множествах.

Что такое множество?

Назовите элементы:

множества «Времена года»

множества «Дни недели»

Что такое подмножество?

Назовите подмножество:

Множества «Растения»

Множества «Спортсмены»

Цели уроки определяются с приема «Проблемная ситуация».

Введение в урок проблемного диалога необходимо для определения учащимися границ знания — незнания. Создание на уроке проблемной ситуации дает возможность учащемуся сформулировать цель занятия.

Учитель показывает ученикам задачу.

Махмуд и Екатерина содержат аквариумных рыбок. Махмуд коллекционирует только меченосцев, а Екатерина- рыбок красного цвета. У детей 8 меченосцев, а красных рыбок-7. Всего у детей-12 рыбок. Возможно ли такое?

Объяснение:

vapebroshop

Правая часть уравнения должна быть неотрицательной:

sin2x \geq 0

2\pi k \leq 2x \leq \pi+2\pi k;k \in Z

\pi k \leq x \leq \frac{\pi}{2}+\pi k;k \in Z

То есть первая и третья четверти,где синус и косинус одного знака.

Очевидно,что модуль их суммы будет больше единицы всегда(неравенство треугольника,где в качестве третьей стороны выступает радиус единичной окружности)

Рассмотрим выражение под модулем:

cosx+sinx

Попробуем найти максимум такой функции

cos^2x+sin^2x=1

cos^2x+2sinxcosx+sin^2x=1+2sinxcosx

(cosx+sinx)^2=1+sin2x

Очевидно,что левая часть принимает наибольшее значение,когда таковое принимает правая.

Правая часть принимает наибольшее значение при

sin2x=1

x=\frac{\pi}{4}+\pi k,k \in Z

max|cosx+sinx|=\sqrt{2}

max(\sqrt{2}sin2x})=\sqrt{2}

Разделим обе части уравнения на \sqrt{2}

|\frac{\sqrt{2}}{2}cosx+\frac{\sqrt{2}}{2}sinx|=sin2x

|sin(x+\frac{\pi}{4})|=sin2x

Очевидно,что синус в первой четверти(для третьей аналогично,так как модуль) больше тогда,когда больше аргумент.

Рассмотрим аргументы обоих синусов на полуинтервале:

x \in [0;\frac{\pi}{4})

x+\frac{\pi}{4}x+x

Значит:|sin(x+\frac{\pi}{4})|sin2x

Рассмотрим аргументы обоих синусов на полуинтервале:

На этом промежутке происходит переход во вторую четверть,где с точностью до наоборот синус большего аргумента имеет меньшее значение.

x \in (\frac{\pi}{4};\frac{\pi}{2}]

x+\frac{\pi}{4}<x+x

Значит:|sin(x+\frac{\pi}{4})|sin2x

Очевидно,что единственным решением уравнения является:

x=\frac{\pi}{4}+\pi k,k \in Z

 

 

 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Реши систему уравнений: (все в фигурной скобке) xy=8 x+у=6 Запиши ответ в порядке возрастания х х1-? у1-? х2-? у2-?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sov0606332
Olia72
ibswoklol1362
oserdyuk41
lyukiss
pronikov90
Светлана
danielianruz
annakorolkova79
tarigor
makovei78
socofilesrus4
Lenamihluk50
Александровна1244
sisychev