Бурмистрова-Ирина660
?>

Реши неравенство 2x−1≥1 . 11 Выбери правильный ответ: x≤5 x≥6 другой ответ x≤6 x≥5

Алгебра

Ответы

houseoftorture138
y= \dfrac{2.5|x|-1}{|x|-2.5x^2} = \dfrac{2.5|x|-1}{-|x|(2.5|x|-1)}=- \dfrac{1}{|x|}

Строим гиперболу y=-\dfrac{1}{x} и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)

Область определения: \displaystyle \left \{ {{|x|\ne0} \atop {2.5|x|-1\ne0}} \right. ~~~\Rightarrow~~~~ \left \{ {{x\ne 0} \atop {x\ne \pm0.4}} \right.

Подставим у=кх в упрощенную функцию.

kx=- \dfrac{1}{|x|}              (*)

Очевидно, что при k=0 уравнение   (*) решений не будет иметь.

1) Если x>0, то kx^2=-1 и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).

2) Если x<0, то kx^2=1 и при k<0 это уравнение решений не имеет.

Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.

Подставим теперь x=\pm0.4, имеем

k\cdot (-0.4)=- \dfrac{1}{0.4} \\ \\ k=6.25                                         k\cdot 0.4=- \dfrac{1}{0.4} \\ \\ k=-6.25

Итак, при k=0 и k=±6.25 графики не будут иметь общих точек

Постройте график функции у=2,5|х|-1/|х|-2,5х^2 и определитель,при каких значениях k прямая у=kx не и
Timurr007

ответ:  нет решения

Объяснение: Размещением из n элементов по х называется любое упорядоченное подмножество из   х элементов множества, состоящего из n различных элементов.  Число размещений без повторений определяется по формуле  

Aₙˣ=  n!/(n-x)!         Значит A²ₙ= n!/(n-2)!

Eсли комбинации из n элементов по x отличаются только составом элементов, то такие неупорядоченные комбинации называют сочетаниями из n элементов по x. Число сочетаний без повторений из n элементов по x определяется по формуле:  

Cₙˣ= n!/ x!(n-x)!     значит  Сₙ²= n!/ 2!(n-2)!

Поэтому Сₙ² : Аₙ²= n!/ 2!(n-2)!  : n!/(n-2)! = 1/2! = 1/2, т.к. 2!= 1·2=2

1/2 ≠ 32, значит уравнение не имеет решения

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Реши неравенство 2x−1≥1 . 11 Выбери правильный ответ: x≤5 x≥6 другой ответ x≤6 x≥5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sgritsaev
andruhovich
Kondratev Ruzavina22
ktripoleva294
Veronika1270
blizzardtap641
zakupki
jgaishun756
Нина1449
cvetprint
Kamil
Терентьева
antoha512
baxirchik
nchalov2