Объяснение:
г) 3/(y-2) +7/(y+2)=10/y, где
y-2≠0; y≠2
y+2≠0; y≠-2
y≠0
(3y(y+2)+7y(y-2)-10(y-2)(y+2))/(y(y-2)(y+2))=0
3y²+6y+7y²-14y-10y²+40=0
40-8y=0
y=40/8=5
ответ: 5.
д) (x+3)/(x-3) +(x-3)/(x+3)=3 1/3, где
x-3≠0; x≠3
x+3≠0; x≠-3
((x+3)(x+3)+(x-3)(x-3))/((x-3)(x+3))=10/3
3((x+3)²+(x-3)²)=10(x²-9)
3(x²+6x+9+x²-6x+9)=10x²-90
10x²-90-6x²-54=0
4x²-144=0 |4
x²=36
x=±6
ответ: -6 и 6.
е) (5x+7)/(x-2) -(2x+21)/(x+2)=8 2/3, где
x-2≠0; x≠2
x+2≠0; x≠-2
((5x+7)(x+2)-(2x+21)(x-2))/((x-2)(x+2))=26/3
3(5x²+10x+7x+14-2x²+4x-21x+42)=26(x²-4)
9x²+168=26x²-104
26x²-9x²=168+104
x²=272/17
x=±√16=±4
ответ: -4 и 4.
Поделитесь своими знаниями, ответьте на вопрос:
надо кто алгебру шарит, ВЫЧИСЛИТЕ НЕРАВЕНСТВО а) 4^-1-3^-2 б) (3 4/7)^-1 -(5/3)^-2 в) (5^-4)^2 * (-25)^-3 : 125^-5 г) ((12 4/11)^-3-(7 5/8)^-2)(1-3, 7)-13
Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным
ответ: 114
второй на смекалку)
(так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х=
(-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х=
0+0+0+....+0+0+112+113+114+..+х
=112+113+..+х
т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0,
и фактически наша сумма равна 112+113+...+х (*)
так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы
, найдем его очень быстро
112=112
112+113=225 - меньше
112+113+114=339 -- совпало
значит искомое число х равно 114
ответ: 114